16-bit Proprietary Microcontroller

CMOS

F²MC-16L MB90610A Series

MB90611A/MB90613A

■ DESCRIPTION

MB90610A series includes 16-bit microcontrollers optimally usable for high-speed real-time data processing in consumer appliances and for system control of printer, CD-ROM, celluar phone, copier, etc. The series uses the *F²MC-16L CPU which is based on the $\mathrm{F}^{2} \mathrm{MC}$-16 but with enhanced high-level language and task switching instructions and additional addressing modes.
The internal peripheral resources consist of a 3-channel serial port incorporating a UART function (and supporting I/O expansion serial mode), 8 -channel 10 -bit A/D converter, 2 -channel PPG, 2-channel 16 -bit reload timer, 8 -channel chip select output, and 8 -channel external interrupts.
Also, multiplexed or non-multiplexed operation can be selected for the address/data bus.
*: "F²MC is an abbreviation for "Fujitsu Flexible Microcontroller".

■ FEATURES

- F^{2} MC-16L CPU
- Minimum instruction execution time: $62.5 \mathrm{~ns} / 4 \mathrm{MHz}$ oscillation (Uses PLL clock multiplication), maximum multiplier $=4$
- Instruction set optimized for controller applications

Upward object code compatibility with F²MC-16 (H)
Wide range of data types (bit/byte/word/long word)
Improved instruction cycles provide increased speed
Additional addressing modes: 23 modes
High code efficiency
Access methods (bank access/linear pointer)
Enhanced multiplication and division instructions (signed instructions added)
High precision operations are enhanced by use of a 32-bit accumulator
Extended intelligent I/O service (access area extended to 64 Kbytes)
Maximum memory space: 16 Mbytes
(Continued)
PACKAGE

100-pin Plastic LQFP
(FPT-100P-M05)
(FPT-100P-M06)

MB90610A Series

(Continued)

- Enhanced high level language (C)/multitasking support instructions

Use of a system stack pointer
Enhanced pointer indirect instructions
Barrel shift instructions
Stack check function

- Improved execution speed: Four byte instruction queue
- Powerful interrupt function
- Automatic data transfer function (does not use instructions)

Internal peripherals

- RAM: 1 Kbyte (MB90611A) 3 Kbytes (MB90613A)
- General purpose ports 8, 16-bit data bus, multiplexed mode : 57 ports max.

16-bit non-multiplexed mode : 41 ports max.
8 -bit non-multiplexed mode : 49 ports max.

- UART (SCI): 3 channels

For either asynchronous or clocked serial transfer (I/O expansion serial)

- A/D converter: 8 channels (10-bit) 8 -bit conversion mode also available
- PPG (programmable pulse generator): 2 channels
- 16-bit reload timer: 2 channels
- Chip select output: 8 channels
- External interrupts: 8 channels
- 18-bit timebase timer Watchdog timer function
- PLL clock multiplier function
- CPU intermittent operation function
- Various standby modes
- LQFP-100/QFP-100 package
- CMOS technology

PRODUCT LINEUP

MB90610A Series

PIN ASSIGNMENT

(Top view)

(FPT-100P-M05)

MB90610A Series

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
$\begin{aligned} & \hline 80 \\ & 81 \end{aligned}$	$\begin{aligned} & 82 \\ & 83 \end{aligned}$	$\begin{aligned} & \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	A (Oscillator)	Crystal oscillator pins
83 to 90	85 to 92	D00 to D07	$\begin{gathered} \mathrm{K} \\ \text { (TTL) } \end{gathered}$	In non-multiplex mode, the I/O pins for the lower 8 bits of the external data bus.
		AD00 to AD07		In multiplexed mode, the I/O pins for the lower 8 bits of the external address/data bus.
91 to 98	93 to 100	P10 to P17	$\begin{gathered} \mathrm{K} \\ \text { (TTL) } \end{gathered}$	General purpose I/O ports This applies in non-multiplexed mode with an 8-bit external data bus.
		P08 to D15		In non-multiplexed mode, the I/O pins for the upper 8 bits of the external data bus This applies when using a 16 -bit external data bus.
		AD08 to AD15		In multiplexed mode, the I/O pins for the upper 8 bits of the external address/data bus.
$\begin{gathered} 99 \\ 100 \\ 1 \text { to } 6 \end{gathered}$	1 to 8	P20 to P27	$\begin{gathered} \mathrm{B} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O ports This applies in multiplexed mode.
		A00 to A07		In non-multiplexed mode, the output pins for the lower 8 bits of the external address bus.
$\begin{gathered} 7 \\ 8 \\ 10 \text { to } 15 \end{gathered}$	$\begin{gathered} 9 \\ 10 \\ 12 \text { to } 17 \end{gathered}$	P30 to P37	$\begin{gathered} \mathrm{B} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O ports This applies in multiplexed mode.
		A08 to A15		In non-multiplexed mode, the output pins for the upper 8 bits of the external address bus.
$\begin{aligned} & 16 \text { to } 20 \\ & 22 \text { to } 24 \end{aligned}$	$\begin{aligned} & 18 \text { to } 22 \\ & 24 \text { to } 26 \end{aligned}$	P40 to P47	$\begin{gathered} \mathrm{B} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O ports This applies when the upper address control register specifies port operation.
		A16 to A23		The output pins for A 16 to 23 of the external address bus This applies when the upper address control register specifies address operation.
25 to 28	27 to 30	P70 to P73	$\stackrel{\mathrm{H}}{(\mathrm{CMOS}}$H)	General purpose I/O ports This applies in all cases.
		INT0 to INT3		External interrupt request input pins As the inputs operate continuously when external interrupts are enabled, output to the pins from other functions must be stopped unless done intentionally.

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

MB90610A Series

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
$\begin{aligned} & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \end{aligned}$	P74, P75	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{H}}$	General purpose I/O ports This applies when the waveform outputs for PPG timers 0 to 1 are disabled.
		INT4, INT5		External interrupt request input pins As the inputs operate continuously when external interrupts are enabled, output to the pins from other functions must be stopped unless done intentionally.
		PPG0, PPG1		Output pins for PPG timers 0 to 1 This applies when the waveform outputs for PPG timers 0 to 1 are enabled.
31	33	P76	$\begin{gathered} \mathrm{H} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port This applies in all cases.
		INT6	$\begin{gathered} \mathrm{H} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	External interrupt request input pin As the input operates continuously when the external interrupt is enabled, output to the pin from other functions must be stopped unless done intentionally.
		$\overline{\text { ATG }}$		Trigger input pin for the A/D converter As the input operates continuously when the A/D converter inputs are operating, output to the pin from other functions must be stopped unless done intentionally.
32	34	AV cc	Power supply	Power supply for the analog circuits Do not switch this power supply on/off unless a voltage greater than AV cc is applied to V cc.
33	35	AVRH	Power supply	Analog circuit reference voltage input Do not switch the voltage to this pin on/off unless a voltage greater than AVRH is applied to $A V$ cc.
34	36	AVRL	Power supply	Analog circuit reference voltage input
35	37	AVss	Power supply	Ground level for the analog circuits
$\begin{aligned} & 36 \text { to } 39 \\ & 41 \text { to } 44 \end{aligned}$	$\begin{aligned} & 38 \text { to } 41 \\ & 43 \text { to } 46 \end{aligned}$	P60 to P67	$\begin{gathered} C \\ (A D) \end{gathered}$	Open-drain output ports This applies when port operation is specified in the analog input enable register.
		AN0 to AN7		Analog input pins for the A/D converter This applies when analog input mode operation is specified in the analog input enable register.
45	47	P80	$\stackrel{H}{(\mathrm{CMOS} / \mathrm{H})}$	General purpose I/O port This applies in all cases.
		INT7		External interrupt request input pin As the input operates continuously when the external interrupt is enabled, output to the pin from other functions must be stopped unless done intentionally.
		TINO		Event input pin for reload timer 0 As the input operates continuously when the reload timer is set to input operation, output to the pin from other functions must be stopped unless done intentionally.

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

MB90610A Series

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
46	48	P81	(CMOS/ H)	General purpose I/O port This applies in all cases.
		TIN1		Event input pin for reload timer 1 As the input operates continuously when the reload timer is set to input operation, output to the pin from other functions must be stopped unless done intentionally.
$\begin{aligned} & 47, \\ & 48 \end{aligned}$	$\begin{aligned} & 49, \\ & 50 \end{aligned}$	MD0, MD1	E (CMOS/ H)	Input pins for specifying an oprating mode Connect directly to V_{cc} or V_{ss}.
49	51	MD2	M (CMOS/ H)	Input pins for specifying an oprating mode Connect directly to V_{cc} or V_{ss}.
50	52	HST	F (CMOS/ H)	Hardware standby input pin
51, 52	53, 54	P82, P83	(CMOS H)	General purpose I/O ports This applies when output is disabled for reload timers 0 to 1 .
		TOT0, TOT1		Output pins for reload timers 0 to 1 This applies when output is enabled for reload timers 0 to 1 .
53	55	P84	(CMOS/ H)	General purpose I/O port This applies in all cases.
		SINO		Serial data input pin for UARTO As the input operates continuously when UARTO is set to input operation, output to the pin from other functions must be stopped unless done intentionally.
54	56	P85	(CMOS H)	General purpose I/O port This applies when serial data output is disabled for UARTO.
		SOTO		Serial data output pin for UARTO This applies when serial data output is enabled for UARTO.
55	57	P86	(CMOS/ H)	General purpose I/O port This applies when the UART0 clock output is disabled.
		SCKO		Clock I/O pin for UARTO This applies when the UARTO clock output is enabled. As the input operates continuously when UARTO is set to input operation, output to the pin from other functions must be stopped unless done intentionally.
56	58	P90	$\stackrel{\mathrm{D}}{\text { (CMOS/ }}$H)	General purpose I/O port This applies in all cases.
		SIN1		Serial data input pin for UART1 As the input operates continuously when UART1 is set to input operation, output to the pin from other functions must be stopped unless done intentionally.

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

MB90610A Series

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
57	59	P91	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port This applies when serial data output is disabled for UART1.
		SOT1		Serial data output pin for UART1 This applies when serial data output is enabled for UART1.
58	60	P92	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port This applies when the UART1 clock output is disabled.
		SCK1		Clock I/O pin for UART1 This applies when the UART1 clock output is enabled. As the input operates continuously when UART1 is set to input operation, output to the pin from other functions must be stopped unless done intentionally.
59	61	P93	$\stackrel{\mathrm{D}}{(\mathrm{CMOS} / \mathrm{H})}$	General purpose I/O port This applies in all cases.
		SIN2		Serial data input pin for UART2 As the input operates continuously when UART2 is set to input operation, output to the pin from other functions must be stopped unless done intentionally.
60	62	P94	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{D}}$	General purpose I/O port This applies when serial data output is disabled for UART2.
		SOT2		Serial data output pin for UART2 This applies when serial data output is enabled for UART2.
61	63	P95	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose I/O port This applies when the UART2 clock output is disabled.
		SCK2		Clock I/O pin for UART2 This applies when the UART2 clock output is enabled. As the input operates continuously when UART2 is set to input operation, output to the pin from other functions must be stopped unless done intentionally.
62	64	CSO	$\stackrel{\text { J }}{\text { (CMOS) }}$	Chip select pin for program ROM
63 to 69	65 to 71	PA1 to PA7	$\begin{gathered} \text { I } \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O ports This applies for pins with chip select output disabled by the chip select control register.
		CS1 to CS7		Output pins for the chip select function This applies for pins with chip select output enabled by the chip select control register.
70	72	P50	$\begin{gathered} \text { I } \\ \text { (CMOS) } \end{gathered}$	General purpose I/O port This applies when CLK output is enabled.
		CLK		CLK output pin

*1: FPT-100P-M05
*2: FPT-100P-M06

MB90610A Series

(Continued)

Pin no.		Pin name	Circuit type	Function
LQFP**	QFP*2			
71	73	P51	$\begin{gathered} \mathrm{L} \\ (\mathrm{TTL}) \end{gathered}$	General purpose I/O port This applies when the external ready function is disabled.
		RDY		Ready input pin This applies when the external ready function is enabled.
72	74	P52	$\begin{gathered} \text { I } \\ \text { (CMOS) } \end{gathered}$	General purpose I/O port This applies when the hold function is disabled.
		$\overline{\text { HAK }}$		Hold acknowledge output pin This applies when the hold function is enabled.
73	75	P53	$\stackrel{\mathrm{L}}{(\mathrm{TTL})}$	General purpose I/O port This applies when the hold function is disabled.
		HRQ		Hold request input pin This applies when the hold function is enabled.
74	76	P54	$\begin{gathered} \text { I } \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O port This applies in 8-bit external bus mode or when output is disabled for the WR pin.
		$\overline{\text { WRH }}$		Write strobe output pin for the upper 8 bits of the data bus This applies in 16-bit external bus mode and when output is enabled for the WR pin.
75	77	$\overline{\text { RST }}$	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	External reset request input pin
76	78	P55	$\begin{gathered} \mathrm{I} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose I/O port This applies when output is disabled for the WR pin.
		$\overline{\text { WRL }}$		Write strobe output pin for the lower 8 bits of the data bus This applies when output is enabled for the WR pin.
77	79	$\overline{\mathrm{RD}}$	$\stackrel{J}{\text { (CMOS) }}$	Read strobe output pin for the data bus
78	80	ALE	$\stackrel{\text { J }}{\text { (CMOS) }}$	ALE (address latch enabling) output pin
21, 82	23, 84	Vcc	Power supply	Power supply for the digital circuits
9, 40, 79	$\begin{gathered} 11,42, \\ 81 \end{gathered}$	Vss	Power supply	Ground level for the digital circuits

*1: FPT-100P-M05
*2: FPT-100P-M06

MB90610A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Max. 3 to 32 MHz - Oscillator feedback resistance: approximately $1 \mathrm{M} \Omega$
B		- CMOS level I/O With standby control
C		- N-channel open drain output - CMOS level hysteresis input With AD control
D		- CMOS level output - CMOS level hysteresis input With standby control

Note: For pins with pull-up resistors, the resistance is disconnected when the pin outputs the "L" level or when in the standby state.
(Continued)

Type	Circuit	Remarks
E		- CMOS level input No standby control
F		- CMOS level hysteresis input No standby control
G		- CMOS level hysteresis input No standby control - With pull-up
H		- CMOS level output - CMOS level hysteresis input No standby control
I		- CMOS level I/O - Pull-up resistor approximately $50 \mathrm{~K} \Omega$ - Pin goes to high impedance during stop mode.

Note: For pins with pull-up resistors, the resistance is disconnected when the pin outputs the "L" level or when in the standby state.
(Continued)

MB90610A Series

(Continued)

Type	Circuit	Remarks
J		- CMOS level output - Pull-up resistor approximately $50 \mathrm{~K} \Omega$ - Pin goes to high impedance during stop mode.
K		- CMOS level output - TTL level input With standby control
L		- CMOS level output - TTL level input - Pull-up resistor approximately $50 \mathrm{~K} \Omega$ - Pin goes to high impedance during stop mode.
M		- CMOS level input No standby control

Note: For pins with pull-up resistors, the resistance is disconnected when the pin outputs the " L " level or when in the standby state.

MB90610A Series

HANDLING DEVICES

1. Preventing Latchup

Latchup occurs in a CMOS IC if a voltage greater than Vcc or less than Vss is applied to an input or output pin or if the voltage applied between V_{cc} and V_{ss} exceeds the rating.
If latchup occurs, the power supply current increases rapidly resulting in thermal damage to circuit elements.
Therefore, ensure that maximum ratings are not exceeded in circuit operation.
For the same reason, also ensure that the analog supply voltage does not exceed the digital supply voltage.

2. Treatment of Unused Pins

Leaving unused input pins unconnected can cause misoperation. Always pull-up or pull-down unused pins.

3. External Reset Input

To reliably reset the controller by inputting an " L " level to the RST pin, ensure that the "L" level is applied for at least five machine cycles. Take particular note when using an external clock input.

4. Vcc and Vss Pins

Ensure that all Vcc pins are at the same voltage. The same applies for the Vss pins.

5. Cautions When Using an External Clock

Drive the X0 pin only when using an external clock.

- Using an External Clock

6. A/D Converter Power Supply and the Turn-on Sequence for Analog Inputs

Always cut the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) before disconnecting the digital power supply (Vcc). When turning the power on or off, ensure that AVRH does not exceed $A V c c$. Also, when using the analog input pins as input ports, ensure that the input voltage does not exceed AV cc.

MB90610A Series

BLOCK DIAGRAM

MB90610A Series

F²MC-16L CPU PROGRAMMING MODEL

- Dedicated Registers

- General-purpose Registers

- Processor States (PS)

MB90610A Series

MEMORY MAP

Type	Address \#3
MB90611A	000500^{H}
MB90613A	$000 D 00^{\text {H }}$

MB90610A Series

I/O MAP

Address	Register	Name	Access	Resource name	Initial value
000000H	Free	-	*3	-	-
000001н	Port 1 data register	PDR1	R/W*	Port $1^{* 8}$	XXXXXXXX
000002н	Port 2 data register	PDR2	R/W*	Port ${ }^{27}$	XXXXXXXX
000003н	Port 3 data register	PDR3	R/W*	Port 3 ${ }^{7}$	XXXXXXXX
000004н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
000005 ${ }_{\text {H }}$	Port 5 data register	PDR5	R/W	Port 5	$--X X X X X X$
000006н	Port 6 data register	PDR6	R/W	Port 6	11111111
000007н	Port 7 data register	PDR7	R/W	Port 7	$-X X X X X X X$
000008н	Port 8 data register	PDR8	R/W	Port 8	$-X X X X X X X$
000009н	Port 9 data register	PDR9	R/W	Port 9	$--X X X X X X$
00000 н $^{\text {¢ }}$	Port A data register	PDRA	R/W	Port A	XXXXXXX-
00000Вн to 10 H	Vacancy	-	*3	-	-
000011H	Port 1 direction register	DDR1	R/W*	Port 1*8	00000000
000012н	Port 2 direction register	DDR2	R/W*	Port ${ }^{27}$	00000000
000013H	Port 3 direction register	DDR3	R/W*	Port 3 ${ }^{7}$	00000000
000014	Port 4 direction register	DDR4	R/W	Port 4	00000000
000015 ${ }^{\text {H }}$	Port 5 direction register	DDR5	R/W	Port 5	--000000
000016н	Analog input enable register	ADER	R/W	Port 6	11111111
000017 H	Port 7 direction register	DDR7	R/W	Port 7	-0000000
000018н	Port 8 direction register	DDR8	R/W	Port 8	-0000000
000019н	Port 9 direction register	DDR9	R/W	Port 9	--000000
00001 Ан	Port A direction register	DDRA	R/W	Port A	0000000 -
00001B to 1 FH	Vacancy	-	*3	-	-
000020 ${ }^{\text {H }}$	Serial mode register 0	SMR0	R/W!	UART0 (SCI)	00000000
000021н	Serial control register 0	SCR0	R/W!		00000100
000022н	Serial input data register 0/ Serial output data register 0	$\begin{aligned} & \text { SIDRO/ } \\ & \text { SODRO } \end{aligned}$	R/W		XXXXXXXX
000023н	Serial status register 0	SSR0	R/W!		00001-00
000024	Serial mode register 1	SMR1	R/W!	UART1 (SCI)	00000000
000025 ${ }^{\text {H }}$	Serial control register 1	SCR1	R/W!		00000100
000026н	Serial input data register 1/ Serial output data register 1	$\begin{aligned} & \text { SIDR1/ } \\ & \text { SODR1 } \end{aligned}$	R/W		XXXXXXXX
000027H	Serial status register 1	SSR1	R/W!		00001-00

(Continued)

MB90610A Series

Address	Register	Name	Access	Resource name	Initial value
000028H	Interrupt/DTP enable register	ENIR	R/W	DTP/external interrupt	00000000
000029н	Interrupt/DTP request register	EIRR	R/W		00000000
00002Ан	Interrupt level setting register	ELVR	R/W		00000000
00002Вн					00000000
$00002 \mathrm{CH}_{\text {H }}$	AD control status register	ADCS	R/W!	A/D converter	00000000
00002Dн					00000000
00002Ен	AD data register	ADCR	$\underset{* 4}{\mathrm{R} / \mathrm{W}!}$		XXXXXXXX
00002F ${ }_{\text {H }}$					O00000xX
000030 ${ }^{\text {H }}$	PPG0 operation mode control register	PPGC0	R/W	PPG0	000000-1
000031H	PPG1 operation mode control register	PPGC1	R/W	PPG1	000000-1
$\begin{array}{r} \text { 000032н, } \\ 33 \mathrm{H} \end{array}$	Vacancy	-	*3	-	-
000034	PPG0 reload register	PRLO	R/W	PPG0	XXXXXXXX
000035 ${ }^{\text {H }}$					XXXXXXXX
000036н	PPG1 reload register	PRL1	R/W	PPG1	XXXXXXXX
000037 ${ }^{\text {H }}$					XXXXXXXX
000038н	Control status register	TMCSR0	R/W!	16-bit reload timer 0	00000000
000039н					----0000
00003Ан	16-bit timer register/ 16-bit reload register	TMR0/ TMRLRO	R/W		XXXXXXXX
00003Bн					XXXXXXXX
00003CH	Control status register	TMCSR1	R/W!	16-bit reload timer 1	00000000
00003D					----0000
00003Ен	16-bit timer register/ 16-bit reload register	TMR1/ TMRLR1	R/W		XXXXXXXX
00003FH					XXXXXXXX
$\begin{array}{r} 000040 \mathrm{H} \\ \text { to } 43 \mathrm{H} \end{array}$	Vacancy	-	*3	-	-
000044н	Serial mode register 2	SMR2	R/W!	UART2 (SCI)	00000000
000045H	Serial control register 2	SCR2	R/W!		00000100
000046н	Serial input data register 2 / Serial output data register 2	SIDR2/ SODR2	R/W		XXXXXXXX
000047H	Serial status register 2	SSR2	R/W!		00001-00
000048н	CS control register 0	CSCR0	R/W	Chip select function	----0000
000049н	CS control register 1	CSCR1	R/W		----0000
00004Ан	CS control register 2	CSCR2	R/W		----0000
00004Вн	CS control register 3	CSCR3	R/W		----0000

(Continued)

MB90610A Series

Address	Register	Name	Access* ${ }^{\text {2 }}$	Resource name	Initial value
00004CH	CS control register 4	CSCR4	R/W	Chip select function	----0000
00004D	CS control register 5	CSCR5	R/W		----0000
00004Ен	CS control register 6	CSCR6	R/W		----0000
00004FH	CS control register 7	CSCR7	R/W		----0000
000050н	Vacancy	-	*3	-	-
000051H	UART0 (SCI) machine clock division control register	CDCR0	W	UART0 (SCI)	----1111
000052н	Vacancy	-	*3	-	-
000053н	UART1 (SCI) machine clock division control register	CDCR1	W	UART1 (SCI)	----1111
000054H	Vacancy	-	*3	-	-
000055	UART2 (SCI) machine clock division control register	CDCR2	W	UART2 (SCI)	----1111
000056 to 8 FH	Vacancy	-	*3	-	-
000090н to $9 \mathrm{E}_{\text {н }}$	Reserved system area	-	*1	-	-
00009Fн	Delayed interrupt generate/ release register	DIRR	R/W	Delayed interrupt generation module	-------0
0000AOH	Low power consumption mode control register	LPMCR	R/W!	Low power consumption	00011000
0000A1н	Clock selection register	CKSCR	R/W!	Low power consumption	11111100
$\begin{array}{r} \text { 0000А2н } \\ \text { to A4н } \end{array}$	Vacancy	-	*3	-	-
0000A5	Auto-ready function selection register	ARSR	W	External pins	0011--00
0000A6H	External address output control register	HACR	W	External pins	00000000
0000A7H	Bus control signal selection register	ECSR	W	External pins	-000*000
0000A8H	Watchdog timer control register	WDTC	R/W!	Watchdog timer	XXXXX111
0000A9н	Timebase timer control register	TBTC	R/W!	Timebase timer	1--00100
0000ААн to AF_{H}	Vacancy	-	*3	-	-
0000B0н	Interrupt control register 00	ICR00	R/W!	Interrupt controller	00000111
0000B1н	Interrupt control register 01	ICR01	R/W!		00000111
0000B2н	Interrupt control register 02	ICR02	R/W!		00000111
0000B3н	Interrupt control register 03	ICR03	R/W!		00000111
0000B4н	Interrupt control register 04	ICR04	R/W!		00000111
0000B5 ${ }^{\text {H }}$	Interrupt control register 05	ICR05	R/W!		00000111

(Continued)

MB90610A Series

(Continued)

Address	Register	Name	Access	Resource name	Initial value
0000B6 ${ }^{\text {H }}$	Interrupt control register 06	ICR06	R/W!	Interrupt controller	00000111
0000B7 ${ }_{\text {H }}$	Interrupt control register 07	ICR07	R/W!		00000111
0000B8н	Interrupt control register 08	ICR08	R/W!		00000111
0000B9н	Interrupt control register 09	ICR09	R/W!		00000111
0000ВАн	Interrupt control register 10	ICR10	R/W!		00000111
0000BBн	Interrupt control register 11	ICR11	R/W!		00000111
0000 BC н	Interrupt control register 12	ICR12	R/W!		00000111
0000BD	Interrupt control register 13	ICR13	R/W!		00000111
0000ВЕн	Interrupt control register 14	ICR14	R/W!		00000111
0000BFH	Interrupt control register 15	ICR15	R/W!		00000111
$\begin{gathered} 0000 \mathrm{COH}_{\mathrm{H}} \\ \text { to } \mathrm{FF} \mathrm{H} \end{gathered}$	External area ${ }^{2}$	-	-	-	-

Initial values
0 : The initial value for this bit is " 0 ".
1 : The initial value for this bit is " 1 ".

* : The initial value for this bit is " 1 " or " 0 ". (Determined by the level of the MD0 to MD2 pins.)
X : The initial value for this bit is undefined.
- : This bit is not used. The initial value is undefined.
*1: Access prohibited.
*2: This is the only external access area in the area below address 0000FFH. Access this address as an external I/O area.
*3: Areas marked as "free" in the I/O map are reserved areas. These areas are accessed by internal access. No access signals are output on the external bus.
*4: Only bit 15 can be written. The other bits are written to by the test function. Reading bits 10 to 15 returns zeros.
*5: The R/W! symbol in the Read/Write column indicates that some bits are read-only or write-only. See the resource's register list for details.
6: Using a read-modify-write instruction (such as the bit set instruction) to access one of the registers indicated by R/W!, R/W, or W in the Read/Write column sets the specified bit to the desired value. However, this can cause misoperation if the other register bits include write-only bits. Therefore, do not use read-modify-write instructions to access these registers.
*7: This register is only available when the address/data bus is in multiplex mode. Access to the register is prohibited in non-multiplex mode.
*8: This register is only available when the external data bus is in 8 -bit mode. Access to the register is prohibited in 16-bit mode.

Note: The initial values listed for write-only bits are the initial values set by a reset. They are not the values returned by a read.
Also, LPMCR/CKSCR/WDTC are sometimes initialized and sometimes not initialized, depending on the reset type. The listed initial values are for when these registers are initialized.

INTERRUPT VECTOR AND INTERRUPT CONTROL REGISTER ASSIGNMENTS TO INTERRUPT SOURCES

Interrupt source	$\begin{aligned} & \mathrm{I}^{2} \mathrm{OS} \\ & \text { sup- } \\ & \text { port } \end{aligned}$	Interrupt vector			Interrupt control register	
		Number		Address	ICR	Address
Reset	\times	\#08	08H	FFFFDCH	-	-
INT 9 instruction	\times	\#09	09н	FFFFD8 ${ }_{\text {H }}$	-	-
Exception	\times	\#10	OАн	FFFFD4н	-	-
External interrupt \#0	\bigcirc	\#11	OBн	FFFFD0 ${ }_{\text {н }}$	ICR00	0000B0н
External interrupt \#1	\bigcirc	\#13	ODн	FFFFC8 ${ }_{\text {H }}$	ICR01	0000B1н
External interrupt \#2	\bigcirc	\#15	OFH	FFFFC0H	ICR02	0000B2н
External interrupt \#3	\bigcirc	\#17	11н	FFFFB8 ${ }_{\text {н }}$	ICR03	0000В3н
External interrupt \#4	\bigcirc	\#19	13H	FFFFB0 ${ }_{\text {¢ }}$	ICR04	0000B4 ${ }_{\text {H }}$
External interrupt \#5	\bigcirc	\#21	15 ${ }^{\text {H}}$	FFFFA8H	ICR05	0000B5
External interrupt \#6	\bigcirc	\#23	17H	FFFFA0H		
UARTO - transmit complete	\bigcirc	\#24	18H	FFFF9CH	ICRO	0000
External interrupt \#7	\bigcirc	\#25	19н	FFFF98 ${ }_{\text {¢ }}$		0000B7
UART1 • transmit complete	\bigcirc	\#26	1边	FFFF94	ICRO7	0000B7
PPG \#0	\times	\#27	1Вн	FFFF90н		
PPG \#1	\times	\#28	1 CH	FFFF8C	ICR08	0000B8H
16-bit reload timer \#0	\bigcirc	\#29	1䉼	FFFF88 ${ }_{\text {н }}$	R0	0000B
16-bit reload timer \#1	\bigcirc	\#30	1Ен	FFFF84	İRO9	о000В
A/DC measurement complete	\bigcirc	\#31	1FH	FFFF80 ${ }_{\text {н }}$	ICR10	0000ВАн
UART2 • transmit complete	\bigcirc	\#33	21H	FFFF78	ICR1	0000B
Timebase timer interval interrupt	\times	\#34	22н	FFFF74	IVR11	0000
UART2 • receive complete	©	\#35	23H	FFFF70н	ICR12	0000BCH
UART1 • receive complete	©	\#37	25 H	FFFF68	ICR13	0000BDн
UARTO - receive complete	(${ }^{\text {a }}$	\#39	27H	FFFF60 ${ }_{\text {H }}$	ICR14	0000BEн
Delayed interrupt generation module	\times	\#42	$2 \mathrm{~A}_{\boldsymbol{H}}$	FFFF54 ${ }_{\text {¢ }}$	ICR15	0000BFH

: indicates that the interrupt request flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal (no stop request).
(0) : indicates that the interrupt request flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal (with stop request).
\times : indicates that the interrupt request flag is not cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal.
Note: Do not specify $\mathrm{I}^{2} \mathrm{OS}$ activation in interrupt control registers that do not support I2OS.

MB90610A Series

PERIPHERAL RESOURCES

1. Parallel Port

The MB90610A series has 58 I/O pins, 18 output pins, and 8 open drain output pins.
Ports 1 to 5 and ports 7 to A are I/O ports. The ports are inputs when the corresponding direction register bit is " 0 " and outputs when the corresponding bit is " 1 ".
Port 1 is only available when the external data bus is in 8 -bit mode. Access is prohibited in 16 -bit mode.
Ports 2 and 3 are only available when the address/data bus is in multiplex mode. Access is prohibited in nonmultiplex mode.
Port 6 is an open drain port. Port 6 pins can only be used as ports when the analog input enable register is " 0 ".

(1) Register Configuration

Notes: No register bits are provided for bit 6 to 7 of port 5 .
No register bit is provided for bit 7 of port 7.
No register bit is provided for bit 7 of port 8 .
No register bits are provided for bits 6 to 7 of port 9 .
No register bit is provided for bit 0 of port A.

MB90610A Series

Note: No register bits are provided for bit 6 to 7 of port 5 .
No register bit is provided for bit 7 of port 7 .
No register bit is provided for bit 7 of port 8 .
No register bits are provided for bits 6 to 7 of port 9 .
No register bit is provided for bit 0 of port A .
Port 6 does not have a DDR.

Analog input enable register ADER 000016	bit	15	14	13	12	11	10	9	8	ADER
		ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	
Read/write		(R/W) (1)	(R/W) (1)	(R/W) (1)	(R/W) (1)	(R/W) (1)	(R/W) (1)	(R/W) (1)	(R/W) (1)	

(2) Register Details

- Port Data Registers

Note: No register bits are provided for bit 6 to 7 of port 5 .
No register bit is provided for bit 7 of port 7.
No register bit is provided for bit 7 of port 8 .
No register bits are provided for bits 6 to 7 of port 9 .
No register bit is provided for bit 0 of port A.
Port 1 is only available when the external data bus is in 8 -bit mode. Access is prohibited in 16 -bit mode. Ports 2,3 are only available in multiplex mode. Access is prohibited in non-multiplex mode.

MB90610A Series

- Port Direction Registers

When pins are used as ports, the register bits control the corresponding pins as follows.
0 : Input mode
1: Output mode
Bits are set to " 0 " by a reset.
Note: No register bits are provided for bit 6 to 7 of port 5 .
No register bit is provided for bit 7 of port 7 .
No register bit is provided for bit 7 of port 8.
No register bit is provided for bit 0 of port A.
No register bits are provided for bits 6 to 7 of port 9 .
Port 6 does not have a DDR.
Port 1 is only available when the external data bus is in 8 -bit mode. Access is prohibited in 16 -bit mode.
Ports 2 and 3 are only available in multiplex mode. Access is prohibited in non-multiplex mode.

- Analog Input Enable Register

bit	15	14	13	12	11	10	9	8	
Analog ADER 000016 ADER 000016	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	ADER
Read/write Initial value -	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	

Controls each pin of port 6 as follows.
0 : Port input mode
1: Analog input mode
Bits are set to "1" by a reset.
Note: Inputting an intermediate level signal in port input mode causes an input leak current to flow. Therefore, set to analog input mode when applying an analog input.

MB90610A Series

(3) Block Diagrams

- I/O Port

- Open Drain Port (Also used as Analog Inputs)

MB90610A Series

(4) Port Pin Allocation

Ports $1,2,3,4$, and 5 on the MB90610A series share pins with the external bus. The pin functions are determined by the bus mode and register settings.

Pin	Function							
	Non-multiplex mode				Multiplex mode			
	External address control				External address control			
	Enable (address)		Disable (port)		Enable (address)		Disable (port)	
	External bus width		External bus width		External bus width		External bus width	
	8-bit	16-bit	8-bit	16-bit	8-bit	16-bit	8-bit	16-bit
$\begin{gathered} \text { D07 to D00 } \\ \text { AD07 to } \\ \text { AD00 } \end{gathered}$	D07 to D00				AD07 to AD00			
$\begin{gathered} \mathrm{P} 17 \text { to P10/ } \\ \mathrm{D} 15 \text { to D08/ } \\ \text { AD15 to } \\ \text { AD08 } \end{gathered}$	Port	$\begin{gathered} \text { D15 to } \\ \text { D08 } \end{gathered}$	Port	$\begin{gathered} \text { D15 to } \\ \text { D08 } \end{gathered}$	A15 to A08	AD15 to AD08	A15 to A08	AD15 to AD08
$\begin{aligned} & \text { P27 to P20/ } \\ & \text { A07 to A00 } \end{aligned}$	A07 to A00		A07 to A00		Port			
$\begin{aligned} & \text { P37 to P30/ } \\ & \text { A15 to A08 } \end{aligned}$	A15 to A08		A15 to A08					
$\begin{aligned} & \text { P47 to P40/ } \\ & \text { A23 to A16 } \end{aligned}$	A23 to A16		Port		A23 to A16		Port	
P57/ALE	ALE				ALE			
$\overline{\mathrm{RD}}$	$\overline{\mathrm{RD}}$				$\overline{\mathrm{RD}}$			
P55/WRL	$\overline{\text { WRL }}$				$\overline{\text { WRL }}$			
P54/WRH	Port	$\overline{\text { WRH }}$						
P53/HRQ	HRQ				HRQ			
P52/ $\overline{\mathrm{HAK}}$	$\overline{\text { HAK }}$				$\overline{\text { HAK }}$			
P51/RDY	RDY				RDY			
P50/CLK	CLK				CLK			

Note: The upper address, $\overline{\mathrm{WRL}}, \overline{\mathrm{WRH}}, \overline{\mathrm{HAK}}, \mathrm{HRQ}, \mathrm{RDY}$, and CLK can be set for use as ports by function selection.

MB90610A Series

2. UART $0 / 1 / 2$ (SCI)

UART 0/1/2 are serial I/O ports that can be used for CLK asynchronous (start-stop synchronization) or CLK synchronous (I/O expansion serial) data transfer. The ports have the following features.

- Full duplex, double buffered
- Supports CLK asynchronous (start-stop synchronization) and CLK synchronous (I/O expansion serial) data transfer
- Multi-processor mode support
- Built-in dedicated baud rate generator

CLK asynchronous: 62500/31250/19230/9615/4808/2404/1202 bps
CLK synchronous: 2 M/1 M/500 K/250 K bps

- Supports flexible baud rate setting using an external clock
- Error detect function (parity, framing, and overrun)
- NRZ type transmission signal
- Intelligent I/O service support

(1) Register Configuration

Serial mode register
Address: channel 0 000020н : channel 1 000024н : channel 2 000044н

Read/write Initial value -

Input data register/
Output data register
Address: channel 0 000022н : channel 1 000026н channel 2 000046н

Read/write $\rightarrow(R / W)(R / W)$
Initial value $\rightarrow \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X})$
Serial status register
Address: channel 0 000023 : channel 1 000027H channel 2 000047н Read/write -
Initial value -
bit
76

$\begin{array}{lllllllll}\text { bit } & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8\end{array}$

bit
 Machine clock division bit

 Initial value -
(-)
(-)
(-)
(-)
(W)
(W)
(W) (W)
(-)
(-)
(-)
(-)
(1)
(1)
(1)
(1)

MB90610A Series

(2) Block Diagram

MB90610A Series

3. 10-bit 8-input A/D Converter (With 8-bit Resolution Mode)

The 10 -bit 8 -input A/D converter converts analog input voltages to digital values. The A/D converter has the following features.

- Conversion time: Minimum of 6.13μ s per channel (98 machine cycles $/ 16 \mathrm{MHz}$ machine clock. This includes the sample and hold time)
- Sample and hold time: Minimum of $3.75 \mu \mathrm{~s}$ per channel (60 machine cycles $/ 16 \mathrm{MHz}$ machine clock)
- Uses RC-type successive approximation conversion with a sample and hold circuit.
- 10-bit or 8-bit resolution
- Eight program-selectable analog input channels

Single conversion mode : Selectively convert a one channel.
Scan conversion mode : Continuously convert multiple channels. Maximum of 8 program-selectable channels.
Continuous conversion mode : Repeatedly convert specified channels.
Stop conversion mode : Convert one channel then halt until the next activation. (Enables synchronization of the conversion start timing.)

- An A/D conversion completion interrupt request to the CPU can be generated on the completion of A / D conversion. This interrupt can activate $\mathrm{I}^{2} \mathrm{OS}$ to transfer the result of A / D conversion to memory and is suitable for continuous operation.
- Activation by software, external trigger (falling edge), or timer (rising edge) can be selected.

(1) Register Configuration

A/D control status register (upper) Address: 00002D	15	14	13	12	11	10	9	8	ADCS1
	BUSY	INT	INTE	PAUS	STS1	STSO	STRT	Reserved	
Read/write \rightarrow Initial value \rightarrow	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} (W) \\ (0) \end{gathered}$	$\begin{aligned} & (-) \\ & (0) \end{aligned}$	ADCSO
A/D control status register (lower) Address: 00002С	7	6	5	4	3	2	1	0	
	MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANEO	
Read/write \rightarrow Initial value \rightarrow	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(R/W) (0)	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	(R/W) (0)	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	
A/D data register (upper) bitAddress: 00002Ен	15	14	13	12	11	10	9	8	ADCR1
	S10	-	-	-	-	-	D9	D8	
Read/write \rightarrow Initial value \rightarrow	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R}) \\ (0) \end{gathered}$	$\begin{aligned} & \text { (R) } \\ & (0) \end{aligned}$	$\begin{aligned} & (\mathrm{R}) \\ & (0) \end{aligned}$	$\begin{aligned} & (\mathrm{R}) \\ & (0) \end{aligned}$	$\begin{aligned} & (\mathrm{R}) \\ & (0) \end{aligned}$	$\begin{aligned} & \text { (R) } \\ & \text { (X) } \end{aligned}$	$\begin{aligned} & \text { (R) } \\ & (\mathrm{X}) \end{aligned}$	
A/D data register (lower) bit Address: 00002FH	7	6	5	4	3	2	1	0	ADCR0
	D7	D6	D5	D4	D3	D2	D1	D0	
Read/write \rightarrow		(R)							
Initial value \rightarrow	(X)								

MB90610A Series

(2) Block Diagram

MB90610A Series

4. $8 / 16-b i t ~ P P G$

This block contains the 8 -bit reload timer module. The block performs PPG output in which the pulse output is controlled by the operation of the timer.
The hardware consists of two 8 -bit down-counters, four 8 -bit reload registers, one 16-bit control register, two external pulse output pins, and two interrupt outputs. The PPG has the following functions.

- 8-bit PPG output in 2-channel independent operation mode: Two independent PPG output channels are available.
- 16-bit PPG output operation mode : One 16-bit PPG output channel is available.
- 8+8-bit PPG output operation mode : Variable-period 8-bit PPG output operation is available by using the output of channel 0 as the clock input to channel 1.
- PPG output operation: Outputs pulse waveforms with variable period and duty ratio.

Can be used as a D/A converter in conjunction with an external circuit.

(1) Register Configuration

PPGO operation mode control register
Address: channel 0 000030H

bit	7	6	5	4	3	2	1	0	PPGC0
	PENO	-	POE0	PIEO	PUFO	PCM1	PCM0	Reserved	
	(R/W) (0)	$($ (0)	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	(R/W) (0)	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(R / W) (0)	$(-)$	

$\begin{array}{ccccccccc}\text { Read/write } \rightarrow & (\mathrm{R} / \mathrm{W}) & (-) & (\mathrm{R} / \mathrm{W}) & (-) \\ \text { Initial value } \rightarrow & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (1)\end{array}$
PPG1 operation mode
control register
Address: channel 1 000031H

Read/write Initial value \rightarrow

Reload register H
Address: channel 0 000035
: channel 1 000037н

Reload register L
Address: channel 0 000034н
: channel 1 000036н
$\begin{array}{llllll}\text { Read/write } \rightarrow & (R / W) & (\mathrm{R} / \mathrm{W}) & (\mathrm{R} / \mathrm{W}) & (\mathrm{R} / \mathrm{W}) & (\mathrm{R} / \mathrm{W}) \\ \text { Initial value } \rightarrow & (\mathrm{R}) & (\mathrm{R} / \mathrm{W}) & (\mathrm{X}) & (\mathrm{R} / \mathrm{W}) & (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) & (\mathrm{X}) & (\mathrm{X}) & (\mathrm{X}) & (\mathrm{X})\end{array}$

MB90610A Series

(2) Block Diagram

- 8/16-bit PPG (channel 0)

MB90610A Series

- 8/16-bit PPG (channel 1)

MB90610A Series

5. 16-bit Reload Timer (with Event Count Function)

The 16-bit reload timers consists of a 16-bit down-counter, a 16-bit reload register, one input (TIN) and one output (TOT) pin, and a control register. The input clock can be selected from one external clock and three types of internal clock. The output pin (TOT) outputs a toggle waveform in reload mode and a rectangular waveform during counting in one-shot mode. The input pin (TIN) functions as the event input in event count mode and as the trigger input or gate input in internal clock mode.
This product has two internal 16-bit reload timer channels.

(1) Register Configuration

Timer control
status register (upper)
Address: channel 0 000039н
: channel 1 00003D f

Read/write $\rightarrow \quad(-) \quad(-) \quad(-) \quad(-) \quad(\mathrm{R} / \mathrm{W})(\mathrm{R} / \mathrm{W})(\mathrm{R} / \mathrm{W})(\mathrm{R} / \mathrm{W})$ Initial value $\rightarrow \quad(-) \quad(-) \quad(-) \quad(-) \quad(0) \quad(0) \quad(0) \quad(0)$

Timer control
status register (lower)
Address: channel 0 000038
: channel $100003 \mathrm{CH}_{\mathrm{H}}$)
Read/write \rightarrow

16-bit timer register (upper)/ 16-bit reload register (upper)
Address: channel 000003 Вн : channel $100003 \mathrm{FH}_{\mathrm{H}}$ \}

Read/write \rightarrow (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) Initial value $\rightarrow \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X})$

16-bit timer register (lower)/ 16-bit reload register (lower)
Address: channel 000003 Ан : channel 1 00003Eн

(2) Block Diagram

MB90610A Series

6. Chip Select Function

This module generates chip select signals to simplify connection of memory or I/O devices. The module has 8 chip select output pins. The hardware outputs the chip select signals from the pins when it detects access of an address in the areas specified in the pin registers.

(1) Register Configuration

Address: 000049н
: 00004Bн
: 00004Dн
: 00004F

Chip select control register (odd numbers: CSCR1/3/5/7)

Address: 000048
$: 00004$ Ан
: 00004CH
: 00004Ен

Chip select control register (even numbers: CSCR0/2/4/6)
(2) Block Diagram

MB90610A Series

7. DTP/External Interrupts

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~L}$ CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~L}$ CPU to activate the extended intelligent I / O service or interrupt processing. Two request levels ("H" and "L") are provided for extended intelligent I/O service. For external interrupt requests, generation of interrupts on a rising or falling edge as well as on " H ", "L" levels can be selected, giving a total of four types.

(1) Register Configuration

Interrupt/DTP enable register Address: 000028H

ENIR
Read/write \rightarrow
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value $\rightarrow \quad(0) \quad(0) \quad(0) \quad(0) \quad(0) \quad(0) \quad(0) \quad(0)$

| bit 15 |
| :---: | | ER7 | 14 | ER6 | ER5 | ER4 | ER3 | ER2 | ER1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ER0 | | | | | | | |

EIRR
Interrupt/DTP register
Address: 000029н
Read/write $\rightarrow \quad(\mathrm{R} / \mathrm{W})(\mathrm{R} / \mathrm{W})$
$\begin{array}{cccccc}(R / W) \\ (0) & (0) & (0) & (0) & (0) & (0) \\ (R) & (0) & (0)\end{array}$
()

| bit 15 |
| :--- | | LB7 | LA7 | LB6 | LA | LB5 | LB | LA5 | LB4 | LA4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Address: 00002Bн
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Read/write \rightarrow
Initial value $\rightarrow \quad(0) \quad(0) \quad(0) \quad(0) \quad(0) \quad(0) \quad(0) \quad(0)$

(2) Block Diagram

MB90610A Series

8. Delayed Interrupt Generation Module

The delayed interrupt generation module is used to generate the task switching interrupt. Interrupt requests to the F^{2} MC-16L CPU can be generated and cleared by software using this module.
(1) Register Configuration

Delayed interrupt generate/ bit clear decoder
Address: 00009FH

(2) Block Diagram
F^{2} MC-16 bus

MB90610A Series

9．Watchdog Timer and Timebase Timer Functions

The watchdog timer consists of a 2－bit watchdog counter，a control register，and a watchdog reset controller． The watchdog counter uses the carry－up signal from the 18 －bit timebase timer as its clock source．In addition to the 18－bit timer，the timebase timer contains an interval interrupt control circuit．The timebase timer uses the main clock，regardless of the value of the MCS bit in the CKSCR register．

（1）Register Configuration

	bit	7	6	5	4	3	2	1	0	WDTC
Watchdog timer control register Address：0000A8H		OONR	STBR	WRST	ERST	SRST	WTE	WT1	WT0	
Read／write \rightarrow		（R）	（R）	（R）	（R）	（R）	（W）	（W）	（W）	
Initial value \rightarrow		（X）	（X）	（X）	（X）	（X）	（1）	（1）	（1）	
Timebase timer control register Address：0000A9н	bit	15	14	13	12	11	10	9	8	TBTC
		Reserved	－	－	TBIE	TBOF	TBR	TBC1	TBCO	
Read／write Initial value \rightarrow		$(-)$	$\begin{aligned} & \text { (一) } \\ & (-) \end{aligned}$	$\begin{aligned} & (一) \\ & (一) \end{aligned}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	（R／W） （0）	（W） （1）	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	

（2）Block Diagram

MB90610A Series

10. Low Power Control Circuits (CPU Intermittent Operation Function, Oscillation Stabilization Delay Time, and Clock Multiplier Function)

The following operation modes are available: PLL clock mode, PLL sleep mode, timer mode, main clock mode, main sleep mode, stop mode, and hardware standby mode. Operation modes other than PLL clock mode are classified as low power consumption modes.
In main clock mode and main sleep mode, the device operates on the main clock only (OSC oscillator clock). The PLL clock (VCO oscillator clock) is stopped in these modes and the main clock divided by 2 is used as the operating clock.
In PLL sleep mode and main sleep mode, the CPU's operating clock only is stopped and other elements continue to operate.
In timer mode, only the timebase timer operates.
Stop mode and hardware standby mode stop the oscillator. These modes maintain existing data with minimum power consumption.
The CPU intermittent operation function provides an intermittent clock to the CPU when register, internal memory, internal resource, or external bus access is performed. This function reduces power consumption by lowering the CPU execution speed while still providing a high-speed clock to internal resources.
The PLL clock multiplier ratio can be set to $1,2,3,4$ by the CS1, 0 bits.
The WS1, 0 bits set the delay time to wait for the main clock oscillation to stabilize when recovering from stop mode or hardware standby mode.

(1) Register Configuration

	bit	7	6	5	4	3	2	1	0	LPMCR
Low power consumption mode control register Address: 0000A0H		STP	SLP	SPL	RST	Resered	CG1	CG0	Resered	
Read/write \rightarrow		(W)	(W)	(R/W)	(W)	(-)	(R/W)	(R/W)	(-)	
Initial value \rightarrow		(0)	(0)	(0)	(1)	(1)	(0)	(0)	(0)	
Clock select register Address: 0000A1н	bit	15	14	13	12	11	10	9	8	CKSCR
		Reserved	MCM	WS1	WS0	Reserved	MCS	CS1	CSO	
Read/write Initial value		$(-)$	$\begin{aligned} & \text { (R) } \\ & (1) \end{aligned}$	$\underset{(1)}{(R / W)}$	(R/W) (1)	$(-)$	(R/W) (1)	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	

(2) Block Diagram

- State Transition Diagram for Clock Selection

(1) MCS bit cleared
(2) PLL clock oscillation stabilization delay complete and CS1/0 $=$ " 00 "
(3) PLL clock oscillation stabilization delay complete and CS1/0 $=$ " 01 "
(4) PLL clock oscillation stabilization delay complete and CS1/0 $=$ " 10 "
(5) PLL clock oscillation stabilization delay complete and CS1/0 = "11"
(6) MCS bit set (including a hardware standby or watchdog reset)
(7) PLL clock and main clock synchronized timing

MB90610A Series

11. Interrupt Controller

The interrupt control registers are located in the interrupt controller. An interrupt control register is provided for each I/O with an interrupt function. The registers have the following three functions.

- Set the interrupt level of the corresponding peripheral.
- Select whether to treat interrupts from the corresponding peripheral as standard interrupts or activate the extended intelligent I/O service.
- Select the extended intelligent I/O service channel.

(1) Register Configuration

Note: Do not access these registers using read-modify-write instructions as this can cause misoperation.

MB90610A Series

(2) Block Diagram

MB90610A Series

12．External Bus Terminal Control Circuit

This circuit controls the external bus terminals intended to extend outwardly the CPU＇s address／data bus．

（1）Register Configuration

Register for selection of AUTO ready function Address：0000A5

$$
\underset{\text { Read/write } \rightarrow}{\text { Initial value } \rightarrow}
$$

$\begin{array}{lllllllll}\text { bit } & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8\end{array}$

IOR1	IOR0	HMR1	HMR0	-	-	LMR1	LMR0
（W） （W） （W） （W） （一） （一） （W） （W） （0） （0） （1） （1） （－） （一） （0） （0）							

Register for control of external address output Address：0000А6н

Read／write \rightarrow Initial value \rightarrow
bit

E23	E22	E21	E20	E19	E18	E17	E16
（W）	（W）	（W）	（W）	（W）	（W）	（W）	（W）
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)

Register for selection of bus control signal
Address：0000A7H

$$
\text { Read/write } \rightarrow
$$ Initial value－

| - | LMBS | WRE | HMBS | IOBS | HDE | RYE | CKE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ECSR | | | | | | | |

（2）Block Diagram

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

					$\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}^{\text {ss }}=0.0 \mathrm{~V}$
Parameter	Symbol	Rating		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss - 0.3	Vss +7.0	V	
	AVcc* ${ }^{\text {* }}$	Vss - 0.3	Vss +7.0	V	
	AVRH** AVRL* ${ }^{*}$	Vss - 0.3	Vss +7.0	V	
Input voltage*2	VI	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage*2	Vo	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
"L" level maximum output current*3	loL	-	15	mA	
"L" level average output current*4	lolav	-	4	mA	
"L" level total maximum output current	${ }^{2} \mathrm{loL}$	-	100	mA	
"L" level total average output current*5	${ }^{2} \mathrm{lolav}$	-	50	mA	
"H" level maximum output current ${ }^{* 3}$	Іон	-	-15	mA	
"H" level average output current*4	Iohav	-	-4	mA	
"H" level total maximum output current	${ }^{2} \mathrm{O} \mathrm{H}$	-	-100	mA	
"H" level total average output current*5	${ }^{2} \mathrm{lohav}$	-	-50	mA	
Power consumption	P_{d}	-	+400	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: AVcc, AVRH, and AVRL must not exceed Vcc. Similarly, it may not exceed AVRL, nor AVRH.
*2: Vı and Vo must not exceed Vcc +0.3 V .
*3: The maximum output current must not be exceeded at any individual pin.
*4: The average output current is the rating for the current from an individual pin averaged over a duration of 100 ms .
*5: The average total output current is the rating for the current from all pins averaged over a duration of 100 ms .
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90610A Series

2. Recommended Operating Conditions

$(\mathrm{Vss}=0.0 \mathrm{~V})$

Parameter	Symbol	Rating		Unit	Remarks	
		Min.	Max.			
Power supply voltage	V Cc	2.7	5.5	V	For normal operation	
		2.0	5.5	V	To maintain statuses in stop mode	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$		

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MB90610A Series

3. DC Characteristics

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min.	Typ.	Max.		
" H " level input voltage	V_{H}	-	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	$\mathrm{V}_{\text {IHS }}$			0.8 Vcc	-	V cc +0.3	V	*1
	Vінм			V cc-0.3	-	$\mathrm{V} \mathrm{cc}+0.3$	V	
	V ${ }_{\text {нт }}$		$\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \%$	2.2	-	-	V	*2
			$\mathrm{V}_{\mathrm{cc}}=+3.0 \mathrm{~V} \pm 10 \%$	0.7 Vcc	-	-	V	*2
"L" level input voltage	VIL		-	Vss -0.3	-	0.3 Vcc	V	
	VıLs			Vss - 0.3	-	0.2 Vcc	V	*1
	VıLM			Vss -0.3	-	Vss +0.3	V	
	Vıт		V cc $=+5.0 \mathrm{~V} \pm 10 \%$	Vss - 0.3	-	0.8	V	*2
			$\mathrm{V}_{\text {cc }}=+3.0 \mathrm{~V} \pm 10 \%$	Vss -0.3	-	0.2 Vcc	V	*2
" H " level output voltage	Vон	Other than P60 to P67	$\begin{aligned} & \mathrm{V} \text { cc }=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
			$\begin{aligned} & \mathrm{V} \mathrm{cc}=+3.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{loH}=-1.6 \mathrm{~mA} \end{aligned}$	Vcc-0.3	-	-	V	
"L" level output voltage	Voı	All output pins	$\begin{aligned} & \mathrm{V} \text { CC }=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{loL}=-4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
			$\begin{aligned} & \mathrm{VCC}=+3.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{loL}=-2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Pull-up resistance	Rpu	RST, P50 to P55, RD, ALE, PA1 to PA7, CSO	-	30	-	100	$\mathrm{k} \Omega$	
Supply current	Icc	Vcc	$\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%$ 16 MHz internal operation	-	50	70	mA	
	Icos			-	25	30	mA	
	Icc		$\mathrm{V} \mathrm{cc}=+3.0 \mathrm{~V} \pm 10 \%$ 8 MHz internal operation	-	10	20	mA	
	Iccs			-	5	10	mA	
	Іссн		$\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-	0.1	10	$\mu \mathrm{A}$	
Input pin capacitance	Cin	Other than AV cc, AV ss, Vcc, Vss	-	-	10	-	pF	
Input leakage current	IIL	Other than P60 to P67	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-10	-	10	$\mu \mathrm{A}$	
Leakage current for open drain outputs	leak	Other than P60 to P67	-	-	0.1	10	$\mu \mathrm{A}$	
Pull-down resistance	R_{pd}	MD2	-	40	-	200	$\mathrm{k} \Omega$	

*1: Hysteresis input pins: $\overline{\mathrm{RST}}, \mathrm{HST}, \mathrm{P} 60$ to P67, P70 to P76, P80 to P86, P90 to P95, PA1 to PA7
*2: TTL input pins: AD00/D00 to AD07/D07, AD08/D08/P10 to AD15/D15/P17, HRQ/P53, RDY/P51

MB90610A Series

4. AC Characteristics

(1) Clock Timing

- When $\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%$
$\left(\mathrm{V} \mathrm{cc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	fc	$\mathrm{X} 0, \mathrm{X} 1$	-	3	32	MHz	
Clock cycle time	tc	X0, X1	-	31.25	333	ns	
Frequency variation ratio* (when locked)	$\Delta \mathrm{f}$	-	-	-	3	\%	
Input clock pulse width	$\begin{aligned} & \mathrm{P}_{\mathrm{wH}} \\ & \mathrm{PwL} \end{aligned}$	X0	-	10	-	ns	The duty ratio should be in the range 30 to 70%
Input clock rise time and fall time	$\begin{aligned} & \mathrm{t} \text { tr } \\ & \mathrm{tof} \end{aligned}$	X0	-	-	5	ns	
Internal operating clock frequency	fcp	-	-	1.5	16	MHz	
Internal operating clock cycle time	tcp	-	-	62.5	666	ns	

*: The frequency variation ratio is the maximum variation from the specified central frequency when the multiplier PLL is locked. The value is expressed as a proportion.

$$
\Delta f=\frac{|\alpha|}{f_{0}} \times 100(\%)
$$

- When Vcc = +2.7 V (min.)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	fc	$\mathrm{X} 0, \mathrm{X} 1$	-	3	16	MHz	
Clock cycle time	tc	X0, X1	-	62.5	333	ns	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \mathrm{P}_{\mathrm{wLL}} \end{aligned}$	X0	-	20	-	ns	The duty ratio should be in the range 30 to 70%
Input clock rise time and fall time	$\begin{aligned} & \text { tor } \\ & \mathrm{tof}_{\mathrm{tof}} \end{aligned}$	X0	-	-	5	ns	
Internal operating clock frequency	fcp	-	-	1.5	8	MHz	
Internal operating clock cycle time	tcp	-	-	125	666	ns	

MB90610A Series

- Clock Timing

- PLL Operation Assurance Range

Relationship between the internal operating clock frequency and supply voltage

Relationship between the oscillation frequency and internal operating clock frequency

Note: Low voltage operation down to 2.7 V is also assured for the evaluation tools.

MB90610A Series

The AC characteristics are for the following measurement reference voltages.

(2) Clock Output Timing

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Cycle time	tove	CLK	$\mathrm{Vcc}=+5 \mathrm{~V} \pm 10 \%$	tcp	-	ns	
CLK $\uparrow \rightarrow$ CLK \downarrow	tchCL			tcp/2-20	tcp/2 + 20	ns	

MB90610A Series

(3) Recommended Resonator Manufacturers

- Sample Application of Piezoelectric Resonator (FAR Family)

FAR part number (built-in capacitor type)	Frequency (MHz)	Dumping resistor	Initial deviation of FAR frequency ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)	Temperature characteristics of FAR frequency $\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}\right)$	Loading capacitors*2
FAR-C4CC-02000-L20	2.00	$1 \mathrm{~K} \Omega$	$\pm 0.5 \%$	$\pm 0.5 \%$	Built-in
FAR-C4CA-04000-M01	4.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-08000-M02	8.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-10000-M02	10.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-16000-M02	16.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	

Inquiry: FUJITSU LIMITED

MB90610A Series

(Continued)

MB90610A Series

(Continued)

Resonator manufacturer*1	Resonator	$\begin{gathered} \hline \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	C1 (pF)*2	C2 (pF) ${ }^{* 3}$	R*4
Murata Mfg. Co., Ltd.	CSA2.00MG040	2.00	100	100	Not required
	CST2.00MG0 ${ }^{\text {co }}$		Built-in	Built-in	Not required
	CSA4.00MG040	4.00	100	100	Not required
	CST4.00MGW040		Built-in	Built-in	Not required
	CSA6.00MG	6.00	30	30	Not required
	CSTC6.00MGW		Built-in	Built-in	Not required
	CSA8.00MTZ	8.00	30	30	Not required
	CSTB.00MTW		Built-in	Built-in	Not required
	CSA10.00MTZ	10.00	30	30	Not required
	CST10.00MTW		Built-in	Built-in	Not required
	CSA12.00MTZ	12.00	30	30	Not required
	CST12.00MTW		Built-in	Built-in	Not required
	CSA16.00MXZ040	16.00	15	15	Not required
	CST16.00MXW0C3		Built-in	Built-in	Not required
	CSA20.00MXZ040	20.00	10	10	Not required
	CSA24.00MXZ040	24.00	5	5	Not required
	CSA32.00MXZ040	32.00	5	5	Not required

Inquiry: Kyocera Corporation

- AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

- AVX Limited

European Sales Headquarters: TEL 44-1252-770000

- AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303
Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

MB90610A Series

(4) Reset and Hardware Standby Inputs
$\left(\mathrm{V}_{\mathrm{cc}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstL	$\overline{\text { RST }}$	-	16 tcp	-	ns	
Hardware standby input time	thstL	HST		16 tcp	-	ns	

- Conditions for Measurement of AC Reference

CL: Load capacity during testing
For CLK and ALE, CL=30 pF.
For address and data buses (AD15 to AD00),
$\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}, \mathrm{CL}=80 \mathrm{pF}$.

MB90610A Series

(5) Power-on Reset

Parameter	Sym-bol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Power supply rise time	tr	Vcc	-	-	30	ms	*
Power supply cut-off time	toff	Vcc		1	-	ms	For repetition of the operation

*: Vcc should be lower than 0.2 V before power supply rise.
Notes: - The above values are the values required for a power-on reset

- When HST = "L", this standard must be followed to turn on power supply for power-on reset whether or not necessary.
- The device has built-in registers which are initialized only by power-on reset. For possible initialization of these registers, turn on power supply according to this standard.

Abrupt changes in the power supply voltage may cause a power-on reset. When changing the power supply voltage during operation, the change should be as smooth as possible, as shown in the following figure.

MB90610A Series

(6) Bus Timing (Read)

$\left(\mathrm{V} \mathrm{cc}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
ALE pulse width	tıнLL	ALE	V cc $=+5.0 \mathrm{~V} \pm 10 \%$	tcp/2-20	-	ns	
			V cc $=+3.0 \mathrm{~V} \pm 10 \%$	tcp/2-35	-	ns	
Valid address \rightarrow ALE \downarrow time	tavil	Address	V cc $=+5.0 \mathrm{~V} \pm 10 \%$	tcp/2-20	-	ns	
			$\mathrm{V} \mathrm{cc}=+3.0 \mathrm{~V} \pm 10 \%$	tcp/2-40	-	ns	
ALE $\downarrow \rightarrow$ address valid time	tllax	Address	-	tcp/2-15	-	ns	
Valid address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time	tavRL	$\overline{\mathrm{RD}}$, Address		tcp - 15	-	ns	
Valid address \rightarrow valid data input	tavov	Address/ data	V cc $=+5.0 \mathrm{~V} \pm 10 \%$	-	$\begin{gathered} 5 \mathrm{tcp} / 2- \\ 60 \end{gathered}$	ns	
			$\mathrm{Vcc}=+3.0 \mathrm{~V} \pm 10 \%$	-	$\begin{gathered} 5 \mathrm{tcp} / 2- \\ 80 \end{gathered}$	ns	
$\overline{\mathrm{RD}}$ pulse width	trlrh	$\overline{\mathrm{RD}}$	-	$\begin{gathered} 3 \mathrm{tcp} / 2- \\ 20 \end{gathered}$	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input	trlov	Data	V cc $=+5.0 \mathrm{~V} \pm 10 \%$	-	$\begin{gathered} 3 \mathrm{tcp} / 2- \\ 60 \end{gathered}$	ns	
			$\mathrm{V} \mathrm{cc}=+3.0 \mathrm{~V} \pm 10 \%$		$\begin{gathered} 3 \mathrm{tcp} / 2- \\ 80 \end{gathered}$	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhox		-	0	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	trhle	$\overline{\mathrm{RD}}$, ALE		tcp/2-15	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address valid time	trhax	Address, $\overline{\mathrm{RD}}$		tcp/2-10	-	ns	
Valid address \rightarrow CLK \uparrow time	tavch	Address, CLK		tcp/2-20	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK \uparrow time	trich	$\overline{\mathrm{RD}}$, CLK		tcp/2-20	-	ns	

MB90610A Series

MB90610A Series

(7) Bus Timing (Write)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	Address	-	tcp - 15	-	ns	
$\overline{\text { WR }}$ pulse width	twlwh	$\overline{\text { WRL }}, \overline{\text { WRH }}$		$3 \mathrm{tcp} / 2-20$	-	ns	
Valid data output $\rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovwh	Data		$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ data hold time	twhDx		V cc $=+5.0 \mathrm{~V} \pm 10 \%$	20	-	ns	
			V cc $=+3.0 \mathrm{~V} \pm 10 \%$	30	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ address valid time	twhax	Address	-	tcp/2-10	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	twHLH	$\frac{\mathrm{ALE}, \overline{\mathrm{WRL}}}{\mathrm{WRH}}$		tcp/2-15	-	ns	
$\overline{\mathrm{WR}} \downarrow \rightarrow$ CLK \downarrow time	twlcl	$\begin{aligned} & \hline \overline{\mathrm{WRL}}, \\ & \overline{\mathrm{WRH}}, \mathrm{CLK} \end{aligned}$		tcp/2-20	-	ns	

MB90610A Series

(8) Ready Input Timing

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
RDY setup time	tryHs	RDY	V cc $=+5.0 \mathrm{~V} \pm 10 \%$	45	-	ns	
			V cc $=+3.0 \mathrm{~V} \pm 10 \%$	70	-	ns	
RDY hold time	try\%H	RDY	-	0	-	ns	

Note: Use the auto-ready function if the setup time at fall of the RDY is too short.

MB90610A Series

(9) Hold Timing

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Pin floating $\rightarrow \overline{\text { HAK }} \downarrow$ time	txhaL	$\overline{\text { HAK }}$	-	30	tcp	ns	
$\overline{\text { HAK }} \uparrow \rightarrow$ pin valid time	thatv	$\overline{\text { HAK }}$	-	tcp	2 tcp	ns	

Note: After reading HRQ, more than one cycle is required before changing $\overline{\mathrm{HAK}}$.

MB90610A Series

(10) I/O Expansion Serial Timing
$\left(\mathrm{Vcc}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK0 to 2	-	8 tcp	-	ns	$C_{L}=80 \mathrm{pF}+1$ TTL for the internal shift clock mode output pin.
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	SCKO to 2 SOTO to 2	$\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%$	-80	80	ns	
			$\mathrm{Vcc}=+3.0 \mathrm{~V} \pm 10 \%$	-120	120	ns	
Valid SIN \rightarrow SCK \uparrow	tivs	SCKO to 2 SIN0 to 2	$\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \%$	100	-	ns	
			$\mathrm{V}_{\mathrm{cc}}=+3.0 \mathrm{~V} \pm 10 \%$	200	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCKO to 2 SIN0 to 2	$\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \%$	60	-	ns	
			$\mathrm{Vcc}=+3.0 \mathrm{~V} \pm 10 \%$	120	-	ns	
Serial clock "H" pulse width	tshsL	SCK0 to 2	-	4 tcp	-	ns	
Serial clock "L" pulse width	tsısh	SCK0 to 2	-	4 tcp	-	ns	$\mathrm{CL}=80 \mathrm{pF}+1$
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCK0 to 2 SOT0 to 2	$\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%$	-	150	ns	TTL for the
			$\mathrm{Vcc}=+3.0 \mathrm{~V} \pm 10 \%$	-	200	ns	external shift
Valid SIN \rightarrow SCK \uparrow	tivs	SCKO to 2 SINO to 2	$\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%$	60	-	ns	
			$\mathrm{Vcc}=+3.0 \mathrm{~V} \pm 10 \%$	120	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCKO to 2 SIN0 to 2	$\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%$	60	-	ns	
			$\mathrm{Vcc}=+3.0 \mathrm{~V} \pm 10 \%$	120	-	ns	

Notes: - These are the AC characteristics for CLK synchronous mode.

- $\mathrm{C}_{\llcorner }$is the load capacitance connected to the pin at testing.
- tcp is the machine cycle period (unit: ns).

MB90610A Series

- Internal Shift Clock Mode

- External Shift Clock Mode

MB90610A Series

(11) Timer Input Timing

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	tтwHL	TIN0 to 1	-	4 tcp	-	ns	

- Timer Input Timing

(12) Timer Output Timing

Parameter	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
CLK $\uparrow \rightarrow$ Tout change timing	too	TOT0 to 1	$\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \%$	30	-	ns	
			$\mathrm{V}_{\mathrm{cc}}=+3.0 \mathrm{~V} \pm 10 \%$	80	-	ns	

- Timer Output Timing

CLK

MB90610A Series

(13) Trigger Input Timing

Parameter	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	ttrgh ttrgl	$\overline{\text { ATG }}$ INT0 to INT1	-	5 tcp	-	ns	

(14) Chip Select Output Timing

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Chip select enabled \rightarrow Valid data input time	tsvov	$\begin{aligned} & \text { CS0 to CS7 } \\ & \text { D15 to D00 } \end{aligned}$	$\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%$	-	$\begin{gathered} 5 \mathrm{tcp} / 2- \\ 60 \end{gathered}$	ns	
			$\mathrm{Vcc}=+3.0 \mathrm{~V} \pm 10 \%$	-	$\begin{gathered} 5 \mathrm{tcp} / 2- \\ 80 \end{gathered}$	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Chip select enabled time	trHsv	$\frac{\mathrm{CS} 0}{\mathrm{RD}} \text { to CS7 }$	-	tcp/2-10	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ Chip select enabled time	twhsv	$\frac{\text { CS0 to CS7 }}{\text { WRH, }}$	-	tcp/2-10	-	ns	
Enabled chip select \rightarrow CLK \uparrow time	tsvch	$\begin{aligned} & \text { CS0 to CS7 } \\ & \text { CLK } \end{aligned}$	-	-	tcp/2-20	ns	

MB90610A Series

5. A/D Converter Electrical Characteristics

Parameter	Symbol	Pin name	Value			Unit
			Min.	Typ.	Max.	
Resolution	-	-	-	10	10	bit
Total error	-	-	-	-	± 3.0	LSB
Linearity error	-	-	-	-	± 2.0	LSB
Differential linearity error	-	-	-	-	± 1.5	LSB
Zero transition voltage	Vот	ANO to AN7	AVRL-1.5	$\begin{gathered} \text { AVRL + } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { AVRL + } \\ 2.5 \end{gathered}$	LSB
Full scale transition voltage	$V_{\text {FST }}$	ANO to AN7	$\begin{gathered} \text { AVRH - } \\ 4.5 \end{gathered}$	$\begin{gathered} \text { AVRH - } \\ 1.5 \end{gathered}$	$\begin{gathered} \hline \text { AVRH + } \\ 0.5 \end{gathered}$	LSB
Conversion time	-	-	6.125*1	-	-	$\mu \mathrm{s}$
			$12.25 * 2$	-	-	$\mu \mathrm{s}$
Analog port input current	IAIN	ANO to AN7	-	0.1	10	$\mu \mathrm{A}$
Analog input voltage	Vain	ANO to AN7	AVRL	-	AVRH	V
Reference voltage	-	AVRH	$\begin{gathered} \text { AVRL + } \\ 2.7 \end{gathered}$	-	AVcc	V
	-	AVRL	0	-	AVRH - 2.7	V
Power supply current	IA	AV ${ }_{\text {cc }}$	-	3	-	mA
	IAH	AV ${ }_{\text {cc }}$	-	-	$5^{* 3}$	$\mu \mathrm{A}$
Reference voltage supply current	IR	AVRH	-	200	-	$\mu \mathrm{A}$
	IRH	AVRH	-	-	$5^{* 3}$	$\mu \mathrm{A}$
Variation between channels	-	ANO to AN7	-	-	4	LSB

*1: For $\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%$ and a 16 MHz machine clock
*2: For $\mathrm{V}_{\mathrm{cc}}=+3.0 \mathrm{~V} \pm 10 \%$ and a 8 MHz machine clock
*3: The current when the A / D converter is not operating or the CPU is in stop mode (for $\mathrm{Vcc}=\mathrm{AV} \mathrm{Vc}=\mathrm{AVRH}=+5.0 \mathrm{~V}$).
Notes: • The relative error increases as |AVRH - AVRL| decreases.

- The output impedance of the external circuit for the analog input should be in the following range. Output impedance of external circuit < approx. $7 \mathrm{k} \Omega$
- If the output impedance of the external circuit is too high, the sampling time for the analog voltage may be too short. (Sampling time $=3.75 \mu \mathrm{~s} @ 4 \mathrm{MHz}$ (This corresponds to 16 MHz internal operation if the multiplier is 4.))
- For an external capacitor to be provided outside the chip, its capacity should desirably be thousands times larger than that of the capacity in the chip taking in consideration the influence of the capacity distribution of the external and internal capacitors.

MB90610A Series

- Model of The Analog Input Circuit

Note: The above values are for reference only.

6. A/D Converter Glossary

- Resolution

The change in analog voltage that can be recognized by the A/D converter.
If the resolution is 10 bits, the analog voltage can be resolved into $2^{10}=1024$ steps.

- Total error

The deviation between the actual and logic value attributable to offset error, gain error, non-linearity error, and noise.

- Linearity error

The deviation between the actual conversion characteristic of the device and the line linking the zero transition point ($0000000000 \leftrightarrow 000000$ 0001) and the full scale transition point (1111111110 $\leftrightarrow 111111$ 1111).

- Differential linearity error

The variation from the ideal input voltage required to change the output code by 1 LSB.

Digital output

MB90610A Series

EXAMPLES CHARACTERISTICS

(1) "H" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage

(2) "L" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage

Viнs: Threshold when input voltage in hysteresis characteristics is set to " H " level
Vııs: Threshold when input voltage in hysteresis characteristics is set to " L " level

MB90610A Series

(5) Power Supply Current (fcp = internal frequency)

(6) Pull-up Resistance

INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Numbers after lower-case letters: Indicate when described in assembler.
\#	Indicates the number of bytes.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL:AH
AH	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RLO, RL1, RL2, RL3
dir	Compact direct addressing
addr16	Direct addressing Physical direct addressing Batdr24 ad24 0 to 15 bit 15 of addr24 ad24 16 to 23
Bit 16 to bit 23 of addr24	

(Continued)

MB90610A Series

(Continued)

Symbol	
rel	Branch specification relative to PC
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *
$\begin{aligned} & 00 \\ & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \\ & 06 \\ & 06 \\ & 07 \end{aligned}$	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	$\begin{gathered} \hline \text { RLO } \\ \text { (RLO) } \\ \text { RL1 } \\ \text { (RL1) } \\ \text { RL2 } \\ \text { (RL2) } \\ \text { RL3 } \\ \text { (RL3) } \end{gathered}$	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	-
$\begin{aligned} & 08 \\ & 09 \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~B} \end{aligned}$	@RW0 @RW1 @RW2 @RW3			Register indirect	0
$\begin{aligned} & 0 C \\ & 0 D \\ & 0 E \\ & 0 \mathrm{OF} \end{aligned}$				Register indirect with post-increment	0
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	@RW0 + disp8 @RW1 + disp8 @RW2 + disp8 @RW3 + disp8 @RW4 + disp8 @RW5 + disp8 @RW6 + disp8 @RW7 + disp8			Register indirect with 8-bit displacement	1
$\begin{aligned} & 18 \\ & 19 \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \end{aligned}$	@RW0 + disp16 @RW1 + disp16 @RW2 + disp16 @RW3 + disp16			Register indirect with 16-bit displacement	2
$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \\ & 1 \mathrm{l} \end{aligned}$	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16			Register indirect with index Register indirect with index PC indirect with 16 -bit displacement Direct address	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$

Note: The number of bytes in the address extension is indicated by the " + " symbol in the " $\#$ " (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	$\begin{array}{c}\text { (a) } \\$\end{array}	$\begin{array}{c}\text { Number of execution cycles } \\ \text { for each type of addressing }\end{array}$
addressing type of			

Note: "(a)" is used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.
Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b) byte		(c) word		(d) long	
	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access
Internal register	+0	1	+0	1	+0	2
Internal memory even address	+0	1	+0	1	+0	2
Internal memory odd address	+0	1	+2	2	+4	4
Even address on external data bus (16 bits)	+1	1	+1	1	+2	2
Odd address on external data bus (16 bits)	+1	1	+4	2	+8	4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.

- When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.
Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus (16 bits)	-	+3
External data bus (8 bits)	+3	-

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

- Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

MB90610A Series

Table 7 Transfer Instructions (Byte) [41 Instructions]

	Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
MOV	A, dir	2	3	0	(b)	byte $(\mathrm{A}) \leftarrow$ (dir)	Z		-	-	-		*	-	-	-
MOV	A, addr16	3	4	0	(b)	byte $($ A $) \leftarrow$ (addr16)	Z	*	-	-	-	*	*	-	-	_
MOV	A, Ri	1	2	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{Ri})$	Z		-	-	-	*	*	-	-	-
MOV	A, ear	2	2	1	0	byte $($ A $) \leftarrow$ (ear)	Z	*	-	-	-	*	*	-	-	-
MOV	A, eam	2+	$3+$ (a)	0	(b)	byte $(A) \leftarrow$ (eam)	Z	*	-	-	-	*	*	-	-	-
MOV	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	Z	*	-	-	-	*	*	-	-	-
MOV	A, \#imm8	2	2	0	0	byte $(A) \leftarrow$ imm8	Z	*	-	-	-	*	*	-	-	-
MOV	A, @A	2	3	0	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{A})$)	Z	-	-	-	-	*	*	-	-	-
MOV	A, @RLi+disp8	3	10	2	(b)	byte (A) $\leftarrow(($ RLi) + disp8)	Z	*	-	-	-	*	*	-	-	
MOVN	A, \#imm4	1	1	0	0	byte $(A) \leftarrow$ imm 4	Z	*	-	-	-	R	*	-	-	-
MOVX	A, dir	2	3	0	(b)	byte $($ A $) \leftarrow$ (dir)	X	*	-	-	-	*	*	-	-	-
MOVX	A, addr16	3	4	0	(b)	byte (A) $\leftarrow($ addr16)	X	*	-	-	-	*	*	-	-	
MOVX	A, Ri	2	2	1	0	byte (A) \leftarrow (Ri)	X	*	-	-	-	*	*	-	-	
MOVX	A, ear	2	2	1	0	byte $($ A $) \leftarrow$ (ear)	X	*	-	-	-	*	*	-	-	-
MOVX	A, eam	2+	$3+$ (a)	0	(b)	byte $(A) \leftarrow$ (eam)	X	*	-	-	-	*	*	-	-	-
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	X	*	-	-	-	*	*	-	-	-
MOVX	A, \#imm8	2	2	0	0	byte $(A) \leftarrow$ imm8	X	*	-	-	-	*	*	-	-	
MOVX	A, @A	2	3	0	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{A})$)	X	-	-	-	-	*	*	-	-	-
MOVX	A,@RWi+disp8	2	5	1	(b)	byte (A) $\leftarrow((\mathrm{RWi})+$ disp8)	X	*	-	-	-	*	*	-	-	-
MOVX	A, @RLi+disp8	3	10	2	(b)	byte (A) $\leftarrow(($ RLi) + disp8)	X	*	-	-	-	*	*	-	-	-
MOV	dir, A	2	3	0	(b)	byte (dir) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOV	addr16, A	3	4	0	(b)	byte (addr16) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOV	Ri, A	1	2	1	0	byte (Ri) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOV	ear, A	2	2	1	0	byte (ear) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOV	eam, A	2+	$3+$ (a)	0	(b)	byte (eam) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOV	io, A	2	3	0	(b)	byte (io) \leftarrow (A)	-	-	-	-	-	*	*	-	-	
MOV	@RLi+disp8, A	3	10	2	(b)	byte ((RLi) +disp8) \leftarrow (A)	-	-	-	-	-	*	*	-	-	
MOV	Ri, ear	2	3	2	0	byte (Ri) \leftarrow (ear)	-	-	-	-	-	*	*	-	-	-
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte (Ri) $\leftarrow($ eam $)$	-	-	-	-	-	*	*	-	-	-
MOV	ear, Ri	2	4	2	0	byte (ear) \leftarrow (Ri)	-	-	-	-	-	*	*	-	-	
MOV	eam, Ri	2+	$5+$ (a)	1	(b)	byte (eam) \leftarrow (Ri)	-	-	-	-	-	*	*	-	-	-
MOV	Ri, \#imm8	2	2	1	0	byte (Ri) \leftarrow imm8	-	-	-	-	-	*	*	-	-	
MOV	io, \#imm8	3	5	0	(b)	byte (io) $\leftarrow \mathrm{imm8}$	-	-	-	-	-	-	-	-	-	
MOV	dir, \#imm8	3	5	0	(b)	byte (dir) \leftarrow imm8	-	-	-	-	-	-	-	-	-	
MOV	ear, \#imm8	3	2	1	0	byte (ear) \leftarrow imm8	-	-	-	-	-	*	*	-	-	
MOV	eam, \#imm8	$3+$	4+ (a)	0	(b)	byte (eam) \leftarrow imm8	-	-	-	-	-	-	-	-	-	
MOV /MOV	@AL, AH	2	3	0	(b)	byte $((\mathrm{A})) \leftarrow(\mathrm{AH})$	-	-	-	-	-	*	*	-	-	-
XCH	A, ear	2	(a)	2	0		Z	-	-	-	-	-	-	-	-	
XCH	A, eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (A) \leftrightarrow (eam)	Z	-	-	-		-	-	-	-	-
$\times \mathrm{XCH}$	Ri, ear	2	7	4	0	byte (Ri) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-
XCH	Ri, eam	2+	$9+(\mathrm{a})$	2	$2 \times$ (b)	byte (Ri) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
MOVW A, dir	2	3	0	(c)	word $(A) \leftarrow$ (dir)	-		-	-	-	*		-	-	-
MOVW A, addr16	3	4	0	(c)	word $(\mathrm{A}) \leftarrow$ (addr16)	-	*	-	-	-		*	-	-	
MOVW A, SP	1	1	0	0	word (A) \leftarrow (SP)	-	*	-	-	-		*	-	-	-
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow(R W i)$	-	*	-	-	-		*	-	-	-
MOVW A, ear	2	2	1	0	word (A) \leftarrow (ear)	-	*	-	-	-		*	-	-	-
MOVW A, eam	2+	$3+$ (a)	0	(c)	word $(A) \leftarrow($ eam $)$	-	*	-	-	-	*	*	-	-	-
MOVW A, io	2	3	0	(c)	word $(A) \leftarrow$ (io)	-	*	-	-	-	*	*	-	-	-
MOVW A, @A	2	3	0	(c)	word $(A) \leftarrow((A))$	-	-	-	-	-	*	*	-	-	-
MOVW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	*	-	-	-	*	*	-	-	-
MOVW A, @RWi+disp8	2	5	1	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RWi})+$ disp8)	-	*	-	-	-	*	*	-	-	-
MOVW A, @RLi+disp8	3	10	2	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	-	*	-	-	-			-	-	-
MOVW dir, A	2	3	0	(c)	word (dir$) \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVW addr16, A	3	4	0	(c)	word (addr16) $\leftarrow(\mathrm{A})$	-	-	-	-	-		*	-	-	-
MOVW SP, A	1	1	0	0	word (SP) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVW RWi, A	1	2	1	0	word $($ RWi) $\leftarrow(A)$	-	-	-	-	-		*	-	-	-
MOVW ear, A	2	2	1	0	word (ear) $\leftarrow(\mathrm{A})$	-	-	-	-	-		*	-	-	-
MOVW eam, A	2+	$3+$ (a)	0	(c)	word (eam) $\leftarrow(A)$	-	-	-	-	-		*	-	-	-
MOVW io, A	2	3	0	(c)	word (io) \leftarrow (A)	-	-	-	-	-		*	-	-	-
MOVW @RWi+disp8, A	2	5	1	(c)	word $(($ RWi) + disp8) $) \leftarrow$ (A)	-	-	-	-	-		*	-	-	-
MOVW @RLi+disp8, A	3	10	2	(c)	word $((\mathrm{RLI})+$ disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVW RWi, ear	2	3	2	(0)	word (RWi) \leftarrow (ear)	-	-	-	-	-		*	-	-	-
MOVW RWi, eam	2+	4+ (a)	1	(c)	word $(\mathrm{RWi}) \leftarrow(\mathrm{eam})$	-	-	-	-	-		*	-	-	-
MOVW ear, RWi	2	$5+$ (a)	2	0	word (ear) $\leftarrow(\mathrm{RWi})$	-	-	-	-	-		*	-	-	-
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (eam) $\leftarrow(\mathrm{RWi})$	-	-	-	-	-	*	*	-	-	-
MOVW RWi, \#imm16	3	2	1	0	word (RWi) \leftarrow imm16	-	-	-	-	-	*	*	-	-	-
MOVW io, \#imm16	4	5	0	(c)	word (io) \leftarrow imm16	-	-	-	-	-	*	-		-	-
MOVW ear, \#imm16	4 $4+$	${ }^{2}$	1	0	word (ear) \leftarrow imm16	-	-	-	-	-		*	-	-	-
MOVW eam, \#mm16	4+	4+ (a)	0	(c)	word $($ eam $) \leftarrow$ imm16					-		-	-	-	-
MOVW AL, AH /MOVW @A, T	2	3	0	(c)	word $((A)) \leftarrow(A H)$	-	-		-	-	*	*	-	-	-
XCHW A, ear	2		2			-	-	-	-	-	-			-	-
XCHW A, eam XCHW RWi ear	${ }_{2}^{2+}$	$5+$ (a)	0	$2 \times(\mathrm{c})$ 0	word (A) \leftrightarrow (eam) word (RWi) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-
XCHW RWi, ear XCHW RWi, eam	2+	9+(a)	4	$2 \times$ (c)	word (RWi) \leftrightarrow (ear) word (RWi) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-
MOVL A, ear	2	4	2	0	long $(A) \leftarrow$ (ear)	-	-	-	-	-	*		-	-	-
MOVL A, eam	$2+$	$5+$ (a)	0	(d)	long $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	-	-	-
MOVL A, \#imm32	5	3	0	0	long $(A) \leftarrow$ imm32	-	-	-	-	-			-	-	-
MOVL ear, A	2	5+(a)	2	0	long (ear) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOVL eam, A	2+	$5+$ (a)	0	(d)	long (eam) $\leftarrow(A)$	-	-	-	-	-	*		-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T N	Z	V	C	RMW
ADD	A,\#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+$ +imm8	Z	-	-	-	-				
ADD	A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)+$ (dir)	Z	-	-	-	-	*	*		-
ADD	A, ear	2	3		0	byte $(A) \leftarrow(A)+($ ear $)$	Z	-	-	-	- *	*	*	*	
ADD	A, eam	2+	$4+(a)$	0	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-	-	*	*	*	-
ADD	ear, A	2	3	2	0	byte (ear) $\leftarrow($ ear $)+(\mathrm{A})$	-	-	-	-	-	*	*	*	-
ADD	eam, A	$2+$	5+(a)	0	$2 \times \mathrm{b}$)	byte (eam) $\leftarrow($ eam $)+(A)$	Z	-	-	-	-	*	*		
ADDC		1	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$	Z	-	-	-	-	*	*		
ADDC	A, ear	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+$ (ear) + (C)	Z	-	-	-	$-$	*	*	*	
ADDC	A, eam	$2+$	4+(a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)+(C)$	Z	-	-		-	*	*		
ADDDC		1	(a)	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$ (decimal)	Z	-	-		- *	*	*		
SUB	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$-imm8	Z	-	-	-	- *	*	*		
SUB	A, dir	2	5	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-$ (dir)	Z	-	-	-	- *	*	*		
SUB	A, ear	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-$ (ear)	Z	-	-	-	- *	*			
SUB	A, eam	2+	4+(a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)$	Z	-	-		- *	*			
SUB	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) - (A)	-	-	-	-	- *	*			
SUB	eam, A	$2+$	5+(a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)-(A)$	$\bar{\square}$	-	-	-	- *	*	*		
SUBC	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$	Z	-	-	-	- *	*	*		-
SUBC	A, ear	2	3	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{ear})-(\mathrm{C})$	Z	-	-	-	- *	*	*		-
SUBC	A, eam	2+	$4+(a)$	0	(b)	byte $(A) \leftarrow(A)-($ eam $)-(C)$	Z	-	-		*	*	*		
SUBDC	A	1	3	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$ (decimal)	Z	-	-				*		
ADDW	A	1	2	0	0	word $(A) \leftarrow(A H)+(A L)$	-	-	-	-					-
ADDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)$	-	-		-	- *		*		-
ADDW	A, eam	$2+$	4+(a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	- *				-
ADDW	A, \#imm16	3	,	0	0	word $(A) \leftarrow(A)+i m m 16$	-	-	-	-	- *		*		-
ADDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) + (A)	-	-	-	-	- **	*	*		-
ADDW	eam, A	2+	5+(a)	0	$2 \times(\mathrm{c})$	word (eam) $\leftarrow($ eam $)+(A)$	-	-	-	-	- *	*			
ADDCW	A, ear	2	3	1	0	word $(A) \leftarrow(A)+(e a r)+(C)$	-	-	-	-	- *				
ADDCW	A, eam	$2+$	4+(a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-	-	-	-	- **				
SUBW		1	2	0	0	word $(A) \leftarrow(A H)-(A L)$	-	-	-	-	- *				-
SUBW	A, ear	2	3	1	0	word $(A) \leftarrow(A)-$ (ear)	-	-	-	-	- *				-
SUBW	A, eam	2+	4+(a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	- **	*			-
SUBW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$-imm16	-	-	-	-	- **				-
SUBW	ear, A	2	5	2	0	word (ear) \leftarrow (ear) - (A)	-	-	-	-	- *	*	*		-
SUBW	eam, A	$2+$	5+(a)	0	$2 \times(\mathrm{c})$	word (eam) $\leftarrow($ (eam) - (A)	-	-	-	-	- ${ }^{*}$	*	*		
SUBCW	A, ear	2	(a)	1	0	word $(A) \leftarrow(A)-($ ear $)-(C)$	-	-	-	-	- *	*	*		-
SUBCW	A, eam	2+	4+(a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)-(C)$	-	-	-	- -	- *				-
ADDL	A, ear	2	7	0	(d)	$\text { long }(A) \leftarrow(A)+(\text { ear })$	-	-	-		- **				
ADDL	A, eam	2+	7+(a)	0	(d)	long $(A) \leftarrow(A)+$ (eam)	-	-	-	-		*			
ADDL	A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)+$ imm32	-	-	-	-		*	*		-
SUBL	A, ear	2	6	2	0	long $(A) \leftarrow(A)-$ ear)	-	-	-	-	- *	*	*		-
SUBL	A, eam	$2+$	7+(a)	0	(d)	long $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	- *	*	*		-
SUBL	A, \#imm32	5	(a)	0	0	long $(A) \leftarrow(A)$-imm32	-	-	-	-	- *	*	*		-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90610A Series

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
$\begin{array}{\|l\|} \hline \text { INC } \\ \text { INC } \end{array}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 2 \\ 5+(a) \end{gathered}$	$\begin{aligned} & \hline 2 \\ & 0 \end{aligned}$	$\underset{2 \times(\mathrm{b})}{0}$	$\begin{aligned} & \text { leyte }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { byte (eam }) \leftarrow(\text { eam })+1 \end{aligned}$	-	-	-	-	-			*	-	
$\left\lvert\, \begin{aligned} & \text { DEC } \\ & \text { DEC } \end{aligned}\right.$	ear	$\begin{gathered} 2 \\ 2+ \end{gathered}$		$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{b}) \end{gathered}$	$\begin{aligned} & \text { byte (ear) } \leftarrow(\text { ear })-1 \\ & \text { byte }(\text { eam }) \leftarrow(\text { eam })-1 \end{aligned}$	-	-	-	-	-	*	*	*	-	-
$\begin{aligned} & \text { INCW } \\ & \text { INCW } \end{aligned}$	ear	$\stackrel{2}{2+}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\underset{2 \times(\mathrm{c})}{0}$	$\begin{aligned} & \text { word }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { word }(\text { eam }) \leftarrow(e a m)+1 \end{aligned}$	-	-	-	-	-	*		*	-	
$\begin{aligned} & \text { DECW } \\ & \text { DECW } \end{aligned}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\underset{2 \times(\mathrm{c})}{0}$	$\begin{aligned} & \text { word }(\text { ear }) \leftarrow(\text { ear })-1 \\ & \text { word (eam) } \leftarrow(\text { eam })-1 \end{aligned}$	-	-	-	-	-	*	*	*	-	*
$\begin{array}{\|l\|l\|} \hline \text { INCL } \\ \text { INCL } \\ \hline \end{array}$	ear	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 7 \\ 9+(a) \end{gathered}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\underset{2 \times(\mathrm{d})}{0}$	$\begin{aligned} & \text { long }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { long }(\text { eam }) \leftarrow(\text { eam })+1 \end{aligned}$	-	-	-	-	-	*	*	*	-	
$\begin{array}{\|l\|} \hline \mathrm{DECL} \\ \mathrm{DECL} \\ \hline \end{array}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 7 \\ 9+(a) \end{gathered}$	4	$\underset{2 \times(\mathrm{d})}{0}$	$\begin{aligned} & \text { long }(\text { ear }) \leftarrow(\text { ear })-1 \\ & \text { long }(\text { eam }) \end{aligned} \leftarrow(\text { eam })-1 .$	-	-	-	-	-	*	*	*	-	*

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic		\#	~	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
CMP	A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-	*	*	*	*	
CMP	A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMP	A, eam	2+	$3+$ (a)	0	(b)	byte $($ A $) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMP	A, \#imm8	2		0	0	byte $(\mathrm{A}) \leftarrow$ imm8	-	-	-	-	-	*	*			-
CMPW	A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMPW	A, ear	2	2	1	0	word $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPW	A, eam	2+	$3+$ (a)	0	(c)	word $(\mathrm{A}) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMPW	A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	-	-	-	-	*	*	*	*	-
CMPL	A, ear	2	6	2	0	word $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPL	A, eam	$2+$	$7+$ (a)	0	(d)	word $(\mathrm{A}) \leftarrow(\mathrm{eam})$	-	-	-	-	-	*	*	*	*	-
CMPL	A, \#imm32	5	3	0	0	word $(A) \leftarrow$ imm32	-	-	-	-	-	*	*	*	*	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
DIVU	A	1	*1	0	0	word (AH) /byte (AL)	-	-	-	-	-	-	-	*	*	-
DIVU	A, ear	2	*2	1	0	word (A)/byte (ear)	-	-	-	-	-	-	-	*	*	-
DIVU	A, eam	2+	*3	0	*6	Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear) word (A)/byte (eam)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, ear	2	*4	1	0	Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam) long (A)/word (ear)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, eam	2+	*5	0	*7	Quotient \rightarrow word (A) Remainder \rightarrow word (ear) long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU MULU		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	*8	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU MULU	A, ear A, eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	*9 ${ }_{*}$	1	(b)	byte (A) *byte (ear) \rightarrow word (A) byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW		1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, ear	2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.
*3: $6+(\mathrm{a})$ when the result is zero, $9+(\mathrm{a})$ when an overflow occurs, and $19+(\mathrm{a})$ normally.
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.
*5: $6+$ (a) when the result is zero, $8+$ (a) when an overflow occurs, and $26+$ (a) normally.
*6: (b) when the result is zero or when an overflow occurs, and $2 \times(\mathrm{b})$ normally.
*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.
*10: $5+(\mathrm{a})$ when byte (eam) is zero, and $9+(\mathrm{a})$ when byte (eam) is not 0 .
*11: 3 when word $(A H)$ is zero, and 11 when word $(A H)$ is not zero.
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.
*13: $5+(\mathrm{a})$ when word (eam) is zero, and $13+(\mathrm{a})$ when word (eam) is not zero.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
AND	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ and imm8	-	-	-	-	-			R	-	
AND	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	
AND	A, eam	2+	$4+$ (a)	0	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
AND	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	-
AND	eam, A	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam) and (A)	-	-	-	-	-	*	*	R	-	
OR	A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ or imm8	-	-	-	-	-	*	*	R	-	-
OR	A, ear	2	3	1	0	byte (A) $\leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	
OR	A, eam	$2+$	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-		*	R	-	-
OR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) or (A)	-	-	-	-	-		*	R	-	-
OR	eam, A	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow (eam) or (A)	-	-	-	-	-		*	R	-	
XOR	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ xor imm8	-	-	-	-	-			R	-	-
XOR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-			R	-	-
XOR	A, eam	2+	$4+$ (a)	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-
XOR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) xor (A)	-	-	-	-	-		*	R	-	*
XOR	eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) xor (A)	-	-	-	-	-			R	-	
NOT	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow$ not (A)	-	-	-	-	-	*	*	R	-	-
NOT	ear	2	3	2	0	byte (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOT	eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*
ANDW	A	1	2	0	0	word $(A) \leftarrow(A H)$ and (A)	-	-	-	-	-			R	-	-
ANDW	A, \#imm16	3		0	0	word $(A) \leftarrow(A)$ and imm16	-	-	-	-	-			R	-	
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-		*	R	-	-
ANDW	A, eam	$2+$	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ANDW	ear, A	2		2	0	word (ear) \leftarrow (ear) and (A)	-	-	-	-	-		*	R	-	-
ANDW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)$ and (A)	-	-	-	-	-			R	-	
ORW		1	2	0	0	word $(A) \leftarrow(A H)$ or (A)	-	-	-	-	-		*	R	-	-
ORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-			R	-	
ORW	A, ear	2	4	1	0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-			R	-	-
ORW	A, eam	$2+$	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-			R	-	-
ORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) or (A)	-	-	-	-	-			R	-	*
ORW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)$ or (A)	-	-	-	-	-	*		R	-	*
XORW	A	3	2	0	0	word $(A) \leftarrow(A H)$ xor (A)	-	-	-	-	-				-	-
XORW	A, \#imm16	3	2	0 1	0	word $(A) \leftarrow$ (A) xor imm16	-	-	-	-	-			R	-	-
XORW	A, ear	2+	$4+$ (a)	1	(c)	word $(A) \leftarrow(A)$ xor (ear) word $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-
XORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*	*	R	-	-
XORW	eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)$ xor (A)	-	-	-	-	-	*		R	-	*
NOTW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-			R	-	-
NOTW	ear	2	3	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOTW	eam	2+	5+ (a)	0	$2 \times$ (c)	word (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90610A Series

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
ANDL ANDL	A, ear	2	$\begin{gathered} 6 \\ 7+(a) \end{gathered}$	2	0	long $(A) \leftarrow(A)$ and (ear) long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	$\begin{aligned} & \mathrm{R} \\ & \mathrm{R} \end{aligned}$	-	_
						long $(A) \leftarrow(A)$ and (eam)	-		-	-	-				-	-
ORL	A, ear	2	6 $7+(a)$	2	0 (d)	long $(A) \leftarrow(A)$ or (ear) long	-	-	-	-	-	*	*	R	-	-
	A, eam	2+	$7+(\mathrm{a})$	0	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-			R	-	-
$\begin{aligned} & \text { XORL } \\ & \text { XORL } \end{aligned}$	A, ea A, eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 6 \\ 7+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	0 (d)	long $(A) \leftarrow(A)$ xor (ear) long $(A) \leftarrow(A)$ xor $($ eam $)$	-	-	-	-	-	*	*	R	-	-

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
NEG	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*	*	-
$\begin{aligned} & \mathrm{NEG} \\ & \mathrm{NFGG} \end{aligned}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\stackrel{3}{5+(a)}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\underset{2 \times(b)}{0}$	$\begin{aligned} & \text { byte }(\text { ear }) \leftarrow 0-(\text { ear }) \\ & \text { byte (eam) } \leftarrow 0-\text { (eam) } \end{aligned}$	-	-	-	-	-	*	*	*	*	*
NEGW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	-	-	-	-	-	*	*	*	*	-
$\begin{aligned} & \text { NEGW } \\ & \text { NEGW } \end{aligned}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\underset{2 \times(\mathrm{c})}{0}$	word (ear) $\leftarrow 0$ - (ear) word $($ eam $) \leftarrow 0-($ eam $)$	-	-	-	-	-	*	*	$*$	*	*

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
NRML A, RO	2	*1	1	0	long $(A) \leftarrow$ Shift until first digit is " 1 " byte $($ RO) \leftarrow Current shift count	-	-	-	-	-	-	*	-	-	-

*1: 4 when the contents of the accumulator are all zeroes, $6+(\mathrm{RO})$ in all other cases (shift count).
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90610A Series

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
RORC A ROLC A	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	byte $(A) \leftarrow$ Right rotation with carry byte $(A) \leftarrow$ Left rotation with carry	-	-	-		-			-		-
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	-
RORC eam	$2+$	5+(a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*		-		*
ROLC ear	2	3	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*		-	*	-
ROLC eam	2+	5+(a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-	*		-	*	*
ASR A, RO	2	*1	1	0	byte $(A) \leftarrow$ Arithmetic right barrel shift (A, RO)	-	-	-	-	*	*	*	-	*	-
LSR A, R0	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	_
LSL A, R0	2	*1	1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRW A	1	2	0	0	word $(A) \leftarrow$ Arithmetic right shift (A, 1 bit)	-									-
LSRW A/SHRW A	1	2	0	0	word $(A) \leftarrow$ Logical right shift (A, 1 bit)		-	-	-	,	$\underset{*}{\text { R }}$	*	-	*	-
LSLW A/SHLW A	1	2	0	0	word (A) \leftarrow Logical left shift (A, 1 bit)	-	-	-	-	-		*	-		-
ASRW A, R0	2	*1	1	0	word $(A) \leftarrow$ Arithmetic right barrel shift $(A, R 0)$	-	-	-	-	*	*	*	-	*	-
LSRW A, R0	2	*1	1	0	word (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSLW A, RO	2	*1	1	0	word (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRL A, R0	2	*2	1	0	long $(A) \leftarrow$ Arithmetic right shift (A, RO)	-	-	-	-	*	*	*	-	*	-
LSRL A, R0	2	*2	1	0	long $(A) \leftarrow$ Logical right barrel shift (A, RO)	-	-	-	-	*	*	*	-	*	-
LSLL A, R0	2	*2	1	0	long $(A) \leftarrow$ Logical left barrel shift (A, R0)	-	-	-	-	-	*		-	*	-

*1: 6 when R 0 is $0,5+(\mathrm{R} 0)$ in all other cases.
*2: 6 when R 0 is $0,6+(\mathrm{R} 0)$ in all other cases.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 18 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
BZ/BEQ rel	2	*1	0	0	Branch when (Z) = 1	-	-	-	-	-	-	-	-	-	-
BNZ/BNE rel	2	*1	0	0	Branch when (Z) $=0$	-	-	-	-	-	-	-	-	-	_
BC/BLO rel	2	*1	0	0	Branch when (C) $=1$	-	-	-	-	-	-	-	-	-	-
BNC/BHS rel	2	*1	0	0	Branch when (C) $=0$	-	-	-	-	-	-	-	-	-	-
BN rel	2	*1	0	0	Branch when (N) $=1$	-	-	-	-	-	-	-	-	-	-
BP rel	2	*1	0	0	Branch when (N) $=0$	-	-	-	-	-	-	-	-	-	-
BV rel	2	*1	0	0	Branch when (V) $=1$	-	-	-	-	-	-	-	-	-	-
BNV rel	2	*1	0	0	Branch when (V) $=0$	-	-	-	-	-	-	-	-	-	-
BT rel	2	*1	0	0	Branch when (T) $=1$	-	-	-	-	-	-	-	-	-	
BNT rel	2	*1	0	0	Branch when (T) $=0$	-	-	-	-	-	-	-	-	-	
BLT rel	2	*1	0	0	Branch when (V) xor (N) $=1$	-	-	-	-	-	-	-	-	-	
BGE rel	2	*1	0	0	Branch when (V) xor (N) = 0	-	-	-	-	-	-	-	-	-	
BLE rel	2	*1	0	0	Branch when ((V) xor (N)) or (Z) = 1	-	-	-	-	-	-	-	-	-	
BGT rel	2	*1	0	0	Branch when ((V) xor (N)) or (Z) = 0	-	-	-	-	-	-	-	-	-	
BLS rel	2	*1	0	0	Branch when (C) or $(Z)=1$	-	-	-	-	-	-	-	-	-	-
BHI rel	2	*1	0	0	Branch when (C) or (Z) = 0	-	-	-	-	-	-	-	-	-	
BRA rel	2	*	0	0	Branch unconditionally	-	-	-	-	-	-	-	-	-	-
JMP @A	1		0	0	word (PC C$) \leftarrow(\mathrm{A})$	-	-	-	-	-	-	-	-	-	-
JMP addr16	3	2	0	0	word (PC) \leftarrow addr 16	-	-	-	-	-	-	-	-	-	-
JMP @ear	2	3	1	0	word (PC) \leftarrow (ear)	-	-	-	-	-	-	-	-	-	-
JMP @eam	$2+$		0	(c)	word (PC) \leftarrow (eam)	-	-	-	-	-	-	-	-	-	-
JMPP @ear*3	2	$4+(a)$ 5	2	0	word $(\mathrm{PC}) \leftarrow$ (ear), (PCB) $\leftarrow($ ear +2$)$	-	-	-	-	-	-	-	-	-	
JMPP @eam *3	2+		0	(d)	word $(\mathrm{PC}) \leftarrow(\mathrm{eam}),(\mathrm{PCB}) \leftarrow(\mathrm{eam}+2)$	-	-	-	-	-	-	-	-	-	
JMPP addr24	4	$6+(a)$ 4	0	0	word $(P C) \leftarrow \operatorname{ad} 240$ to 15 , (PCB) \leftarrow ad24 16 to 23	-	-	-	-	-	-	-	-	-	-
					word (PC) \leftarrow (ear)				-	-	-	-	-	-	
CALL @eam*4	2+		0	$2 \times(\mathrm{c})$	word (PC) \leftarrow (eam)	-	-	-	-	-	-	-	-	-	
CALL addr16*5	3	$7+(\mathrm{a})$ 6	0	(c)	word (PC) \leftarrow addr16	-	-	-	-	-	-	-	-	-	
CALLV \#vct4*5	1	7	0	$2 \times(\mathrm{c})$	Vector call instruction	-	-	-	-	-	-	-	-	-	
CALLP @ear*6	2	10	2	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow($ ear $) 0$ to 15 $(\mathrm{PCB}) \leftarrow$ (ear) 16 to 23	-	-	-	-	-	-	-	-	-	-
CALLP @eam *6	2+	11+(a)	0	*2	word (PC) $\leftarrow($ eam $) 0$ to 15	-	-	-	-	-	-	-	-	-	-
CALLP addr24 *7	4	10	0	2×(c)	word $(P C) \leftarrow$ addr0 to 15, $(\mathrm{PCB}) \leftarrow$ addr16 to 23	-	-	-	-	-	-	-	-	-	-

*1: 4 when branching, 3 when not branching.
*2: (b) $+3 \times(\mathrm{c})$
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: read (long word) R branch address.
*7: Save (long word) to stack.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 19 Branch 2 Instructions [19 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
CBNE A, \#imm8, rel	3	*1	0	0	Branch when byte (A) $=$ imm8	-	-	-	-	-	*	*	*	*	-
CWBNE A, \#imm16, rel	4	${ }^{*}$	0	0	Branch when word $(A) \neq$ imm16	-	-	-	-	-	*	*	*	*	-
CBNE ear, \#imm8, rel	4	*2	1	0	Branch when byte (ear) $=$ imm8	-	-	-	-	-	*	*	*	*	-
CBNE eam, \#imm8, rel*9	4+	*3	0	(b)	Branch when byte (eam) $=$ imm8	-	-	-	-	-	*	*	*	*	-
CWBNE ear, \#imm16, rel	5	*4	1	0	Branch when word (ear) $=$ imm16	-	-	-	-	-	*	*	*	*	-
CWBNE eam, \#imm16, rel* ${ }^{* 9}$	5+	*3	0	(c)	Branch when word (eam) $=$ imm16	-	-	-	-	-	*	*	*	*	-
DBNZ ear, rel	3	*5	2	0	Branch when byte (ear) =	-	-	-	-	-	*	*	*	-	-
DBNZ eam, rel	$3+$	*6	2	$2 \times$ (b)	Branch when byte $($ eam $)=$ (eam) - 1 , and $(e a m) \neq 0$	-	-	-	-	-	*	*	*	-	*
DWBNZ ear, rel	3	*5	2	0	Branch when word (ear) = (ear) - 1, and (ear) $\neq 0$	-	-	-	-	-	*	*	*	-	-
DWBNZ eam, rel	$3+$	*6	2	$2 \times$ (c)	Branch when word (eam) = (eam) - 1, and (eam) $\neq 0$	-	-	-	-	-	*	*	*	-	*
INT \#vct8	2	20	0	$8 \times(\mathrm{c})$	Software interrupt	-	-	R	S	-	-	-	-	-	-
INT addr16	3	16	0	6×(c)	Software interrupt	-	-	R	S	-	-	-	-	-	_
INTP addr24	4	17	0	6×(c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
INT9	1	20	0	$8 \times(\mathrm{c})$	Software interrupt	-	-	$\underset{*}{R}$	S	-	*	-	-	-	
RETI		15		6×(c)	Return from interrupt	-	-								
LINK \#local8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and allocate local pointer	-	-	-	-	-	-	-	-	-	-
UNLINK	1	5	0	(c)	area At constant entry, retrieve old frame pointer from stack.	-	-	-	-	-	-	-	-	-	-
RET *7	1	4	0		Return from subroutine	-	-	-	-	-	-	-	-	-	-
RETP *8	1	6	0	(d)	Return from subroutine	-	-	-	-	-	-	-	-	-	-

*1: 5 when branching, 4 when not branching
*2: 13 when branching, 12 when not branching
*3: $7+$ (a) when branching, $6+$ (a) when not branching
*4: 8 when branching, 7 when not branching
*5: 7 when branching, 6 when not branching
*6: $8+$ (a) when branching, $7+$ (a) when not branching
*7: Retrieve (word) from stack
*8: Retrieve (long word) from stack
*9: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
PUSHW A	1	4	0	(c)	word (SP) \leftarrow (SP) $-2,($ SP $)$) \leftarrow (A)	-	-	-	-	-	-	-	-	-	-
PUSHW AH	1	4	0	(c)	word (SP) $\leftarrow\left(\begin{array}{ll}\text { SP) }\end{array}\right)-2,((S P)) \leftarrow(A H)$	-	-	-	-	-	-	-	-	-	-
PUSHWPS	1	4	0	(c)	word $(S P) \leftarrow(S P)-2,((S P)) \leftarrow(P S)$	-	-	-	-	-	-	-	-	-	-
PUSHW rlst	2				$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-	-	-	-	-	-	-	-	-	-
POPW A	1	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{SP}) \mathrm{)},(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	*	-	-	-	-	-	-	-	-
POPW AH	1	3	0	(c)	word $(\mathrm{AH}) \leftarrow\left(\begin{array}{l}\text { (SP) }\end{array}\right)$, (SP) $\leftarrow(\mathrm{SP})+2$	-	-	-	-	-	-	-	-	-	-
POPW PS	1	4	${ }_{*}^{0}$	(c)		-	-	*	*	*	*	*	*	*	-
POPW rlst	2	*2	*5		$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-	-	-	-	-	-	-	-	-	-
JCTX @A	1	14	0	$6 \times$ (c)	Context switch instruction	-	-	*	*	*	*	*	*	*	-
AND CCR, \#imm8	2	3	0	0	byte $($ CCR $) \leftarrow(C C R)$ and imm8	-	-	*	*	*	*	*	*	*	-
OR CCR, \#imm8	2	3	0	0	byte $(C C R) \leftarrow(C C R)$ or imm8	-	-	*	*	*	*				-
MOV RP, \#imm8	2	2	0	0	byte (RP) ↔imm8	-	-	-	-	-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	0	byte $($ (LM) $) \leftarrow \mathrm{imm8}$	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, ear	2		1	0	word (RWi) \leftarrow ear		-	-	-	-	-	-	-		-
MOVEA RWi, eam MOVEA A, ear	$\begin{array}{\|c} 2+ \\ 2+ \end{array}$	$2+(a)$	1	0	word (RWi) \leftarrow eam word $(A) \leftarrow$ ear	-	-	-	-	-	-	-	-	-	-
MOVEA A, eam	2+	$1+$ (a)	0	0	word $(A) \leftarrow$ eam	-	*	-	-	-	-	-	-	-	-
ADDSP \#imm8	2	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ ext (imm8)	-	-	-	-	-	-	-	-	-	-
ADDSP \#imm16	3	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ imm16	-	-	-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $(\mathrm{A}) \leftarrow$ (brgl)	Z	*	-	-	-	*	*	-	-	-
MOV brg2, A	2	1	0	0	byte (brg2) $\leftarrow(A)$	-	-	-	-	-	*		-	-	-
NOP	1	1	0	0	No operation	-	-	-	-	-	-	-	-	-	-
ADB	1	1	0	0	Prefix code for accessing AD space	-	-	-	-	-	-	-	-	-	-
DTB	1	1	0	0	Prefix code for accessing DT space	-	-	-	-	-	-	-	-	-	-
PCB	1	1	0	0	Prefix code for accessing PC space	-	-	-	-	-	-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space	-	-	-	-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no flag change	-	-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix code for common register bank	-	-	-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state

$$
\text { DTB, DPR : } 2 \text { states }
$$

*2: $7+3 ¥$ (pop count) $+2 ¥$ (last register number to be popped), 7 when rlst $=0$ (no transfer register)
*3: $29+$ (push count) $-3 ¥$ (last register number to be pushed), 8 when rlst $=0$ (no transfer register)
*4: Pop count $¥$ (c), or push count $¥$ (c)
*1: Pop count or push count.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90610A Series

Table 21 Bit Manipulation Instructions [21 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	N	Z	V	C	RMW
MOVB A, dir:bp	3	5	0	(b)	byte $(\mathrm{A}) \leftarrow$ (dir:bp) b	Z	*	-	-	-			*	-	-	-
MOVB A, addr16:bp	4	5	0	(b)	byte $($ A $) \leftarrow$ (addr16: bp) b	Z	*	-	-	-		*	*	-	-	_
MOVB A, io:bp	3	4	0	(b)	byte $(\mathrm{A}) \leftarrow$ (io:bp) b	Z	*	-	-	-		*	*	-	-	-
MOVB dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-		*	-	-	-	*
MOVB addr16:bp, A	4	7	0	$2 \times$ (b)	bit (addr16:bp) $b \leftarrow(A)$	-	-	-	-	-		*	*	-	-	*
MOVB io:bp, A	3	6	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-			*	-	-	*
SETB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $b \leftarrow 1$	-	-	-	-	-		-	-	-	-	*
SETB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) b $\leftarrow 1$	-	-	-	-	-	-	-	-	-	-	*
SETB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $b \leftarrow 1$	-	-	-	-	-	-	-	-	-	-	*
CLRB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-			-	-	-	*
CLRB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	-	*
CLRB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	-	*
BBC dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) b $=0$	-	-	-	-	-		-	*	-	-	-
BBC addr16:bp, rel	5	${ }^{* 1}$	0	(b)	Branch when (addr16:bp) b=0	-	-	-	-	-	-	-	*	-	-	-
BBC io:bp, rel	4	2	0	(b)	Branch when (io:bp) $b=0$	-	-	-	-	-	-	-	*	-	-	-
BBS dir:bp, rel	4	${ }^{1}$	0	(b)	Branch when (dir:bp) $b=1$	-	-	-	-	-			*	-	-	-
BBS addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) b=1	-	-	-	-	-		-	*	-	-	-
BBS io:bp, rel	4	*	0	(b)	Branch when (io:bp) $b=1$	-	-	-	-	-		-	*	-	-	-
SBBS addr16:bp, rel	5	*3	0	$2 \times$ (b)	Branch when (addr16:bp) $b=1$, bit $=1$	-	-	-	-	-	-	-	*	-	-	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=1$	-	-	-	-	-		-	-	-	-	-
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=0$	-	-	-	-	-	-	-	-	-	-	-

*1: 8 when branching, 7 when not branching
*2: 7 when branching, 6 when not branching
*3: 10 when condition is satisfied, 9 when not satisfied
*4: Undefined count
*5: Until condition is satisfied
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow(A) 8$ to 15	-		-	-	-	-	-	-	-	
SWAPW/XCHW AL, AH	1	2	0	0	word $(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign extension	X	$\bar{\chi}$	-	-	-	*	*	-	-	-
EXTW	1	2	0	0	word sign extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	0	byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	-	-	R	*	-	-	-

Table 23 String Instructions [10 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVS/MOVSI	2	*2	*	*3	Byte transfer @AH+ ¢@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	
MOVSD	2	*2	*5	*3	Byte transfer @AH- ¢@AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*	*4	Byte retrieval (@AH+)-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*	*4	Byte retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	$6 \mathrm{~m}+6$	*5	*3	Byte filling @AH $+\leftarrow$ AL, counter = RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*8	* 6	Word transfer @AH+ ¢@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSWD	2	*2	*8	* 6	Word transfer @AH- ¢@AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	*1	*8	*7	Word retrieval (@AH-)-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$6 m+6$	*8	* 6	Word filling @AH $+\leftarrow \mathrm{AL}$, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
n: Loop count
*1: 5 when RW0 is $0,4+7 \times($ RW0 $)$ for count out, and $7 \times n+5$ when match occurs
*2: 5 when RW0 is $0,4+8 \times($ RWO $)$ in any other case
*3: (b) $\times($ RW0 $)+(b) \times($ RW0 $)$ when accessing different areas for the source and destination, calculate (b) separately for each.
*4: (b) $\times n$
*5: $2 \times($ RW0 $)$
*6: (c) $\times($ RW0 $)+(c) \times($ RW0 $)$ when accessing different areas for the source and destination, calculate (c) separately for each.
*7: (c) $\times n$
*8: $2 \times(\mathrm{RWO})$
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90610A Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90611APFV	100-pin Plastic LQFP (FPT-100P-M05)	
MB90611APF	100-pin Plastic QFP (FPT-100P-M06)	

MB90610A Series

PACKAGE DIMENSIONS

100-pin Plastic LQFP
 (FPT-100P-M05)

© 1995 FUJITSU LIMITED F100007S-2C-3
Dimensions in mm (inches)

100-pin Plastic QFP
(FPT-100P-M06)

© 1994 FUJTSU LIMITED F100008-3C-2
Dimensions in mm (inches)

MB90610A Series

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am-5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

